本书共分4编,对Vandermonde行列式进行了介绍,并进行了推广,得到不同的结果。主要内容包括:Vandermonde其人;Vandermonde行列式与竞赛试题;从一道全国联赛加试题谈起;Chebotarev定理等。
本书共12章,包括Fermat数、Fermat数的素性判断、Fermat数的性质研究、Fermat数与几何作图、Fermat数与梅森数和完全数、计算数论的产生、广义Fermat数、Fermat数的应用等内容。本书从Fermat数的提出开始系统地阐述了Fermat数的研究历程与推广过程,通过阅读本书可以使读者充分地理解且
本书主要阐述了麦比乌斯函数及其相关理论,并详细介绍了有关麦比乌斯函数在高等数学中的若干应用,全书共分8章,分别是麦比乌斯函数的提出与性质、练习与征解问题、应用举例、麦比乌斯函数在解析数论中的应用、短区间中的达文波特定理、麦比乌斯函数在有限域上的多项式和原根研究中的应用、有限环上的齐次重量与麦比乌斯函数、麦比乌斯函数在关
本书共分四篇,从一道联邦德国奥林匹克试题谈起,详细介绍了Erd?s-Ginzburg-Ziv定理的相关知识及研究背景,同时还介绍解该定理在图论中的应用与推广等内容。
本书共4编,详述了有关Smarandache函数性质的若干研究,含有Smarandache函数的方程,有关Smarandache函数均值问题的研究,数论函数的相关结果等内容。
本书详细介绍了哈密尔顿一凯莱定理的相关知识。全书共分为5章,分别为:引言、基础篇、应用篇、人物篇与进一步的讨论,在附录中详细介绍了哈密尔顿一凯莱定理的另一证法。
本书共分四编,详细地介绍了Lagrange插值多项式的概念及相关的应用方法,主要包括差分与反差值、逼近论中的插值法、无穷区间上等距节点样条的引人内容,同时还补充介绍了形状可调的C2连续三次三角Hermite插值样条的相关内容。
本书分为六章,内容涉及矩阵的基础理论,投影阵和广义逆矩阵,不等式与极值问题,矩阵的特殊乘积与矩阵函数的微商,KyFan引理及应用,详细介绍了KyFan定理及相关理论,内容丰富且全面。本书适合高等院校理工科师生及数学爱好者研读。
本书参考《高等代数》第五版),参照近年来线性代数课程及教材建设的经验成果,在内容的编排、概念的叙述、符号的规范等诸多方面进行了修订。在保持简明特色的基础上,结构更趋流畅、论述更通俗易懂、资源更丰富饱满,因而更易教易学,也更适应当前的本科线性代数课程的同步辅导。每章的讲解结构包括:主要内容归纳、经典例题解析及解题方法解答
本书是为准备考研的学生复习线性代数而编写的一本辅导讲义,由作者近年来的辅导班笔记改写而成。本书覆盖了线性代数领域的各方面知识,因而也可作为大一新生学习线性代数时的参考书使用。全书共分六章及一个附录,每章均由知识结构网络图、基本内容与重要结论、典型例题分析选讲以及练习题精选四部分组成,为的是方便同学们总结归纳以及更好地实