《智能控制理论与技术(第2版)》介绍了:模糊控制、神经网络控制、专家控制、学习控制、分层递阶控制及智能优化方法等内容,每部分既自成体系,又互相联系,它们共同构成了智能控制理论和技术的主要内容。《智能控制理论与技术(第2版)》取材新颖,内容丰富,弥补了当前智能控制缺乏系统性资料的不足。
《智能控制理论与技术(第2版)》可作为信息、自动化及计算机应用等专业的本科生及研究生的教材及参考书,也可供有关教师和科技工作者学习参考。
本书第1版于1997年出版,国内有不少单位将其作为教材或参考书。该书出版以来,我们仍一直从事这门课程的教学及相关领域的研究工作。十多年的教学和研究实践为本书的修订积累了丰富的素材。这次再版在保留原书框架的基础上,对内容做了适当的增删,使之更加精练、系统,并继续保持了内容的先进性。这次修改较大的是第2章、第3章和第7章。
智能控制是在人工智能及自动控制等多学科基础上发展起来的新兴的交叉学科,目前尚未建立起一套较完整的智能控制的理论体系,关于它所包含的技术内容也还没有取得比较一致的共识。本书仅是根据作者的认识和体会,就智能控制的理论和技术作尽可能全面的介绍,以弥补这方面缺乏系统性资料的不足。
本书在参考了国内外重要文献的基础上,对其主要内容加以系统总结和整理,同时也有部分内容是笔者研究工作的总结,如基于T-S模糊模型的系统分析与设计、BP网络学习算法的改进、模糊神经网络、递归神经网络、改进的遗传算法、遗传算法中的联结关系及基于联结关系检测的分布估计算法等。
本书第1章是绪论,简要介绍智能控制的发展概况、研究对象、基本结构、主要特点、采用的数学工具及包含的主要理论等。
第2章介绍模糊逻辑控制,在简要介绍模糊集合及模糊逻辑推理的基础上,重点介绍了模糊控制的基本原理、模糊控制系统的分析与设计以及自适应模糊控制等内容。
第3章介绍神经网络控制,重点介绍几种用于控制的神经网络模型,其中包括多层前馈网络、Hopfield网络、CMAC、B样条、RBF及模糊神经网络等;在此基础上系统地介绍了基于神经网络的建模与控制;最后介绍神经网络在机器人控制中的应用。
第4章介绍专家控制,主要介绍专家控制的基本原理、典型结构和当前的研究课题,最后介绍一种仿人智能控制。
第5章介绍学习控制,主要介绍基于模式识别的学习控制、基于迭代和重复的学习控制以及联结主义的学习控制。
第6章介绍分层递阶智能控制,重点介绍G.N.Saridis等人提出的由组织级、协调级和执行级所组成的分层递阶的智能控制结构和原理。
第7章介绍智能优化方法,主要包括遗传算法、粒子群优化算法、蚁群优化算法、人工免疫算法和分布估计算法等。
本书第1章、第2章、第6章、第3章3.1~3.5节和3.9节、第7章7.2节和7.6节由孙增圻编写,第3章3.6~3.8节、第7章7.1节和7.3~7.5节由邓志东编写,第4章、第5章由张再兴编写,邓志东为第5章及第3章3.1节提供了部分素材,全书由孙增圻统稿。
由于笔者的水平所限,书中尚存在一些不足和错误之处,欢迎读者批评指正。
编著者2011年5月于清华大学
第1章 绪论
1.1 智能控制的基本概念
1.1.1 智能控制的研究对象
1.1.2 智能控制系统
1.1.3 智能控制系统的基本结构
1.1.4 智能控制系统的主要功能特点
1.1.5 智能控制研究的数学工具
1.2 智能控制的发展概况
1.3 智能控制理论
第2章 模糊逻辑控制
2.1 概述
2.1.1 模糊控制与智能控制
2.1.2 模糊集合与模糊数学的概念
2.1.3 模糊控制的发展和应用概况
2.2 模糊集合及其运算
2.2.1 模糊集合的定义及表示方法
2.2.2 模糊集合的基本运算
2.2.3 模糊集合运算的基本性质
2.2.4 模糊集合的其他类型运算
2.3 模糊关系
2.3.1 模糊关系的定义及表示
2.3.2 模糊关系的合成
2.4 模糊逻辑与近似推理
2.4.1 语言变量
2.4.2 模糊蕴含关系
2.4.3 近似推理
2.4.4 句子连接关系的逻辑运算
2.5 基于规则库的模糊推理
2.5.1 mimo模糊规则库的化简
2.5.2 模糊推理的一般步骤
2.5.3 论域为离散时模糊推理计算举例
2.5.4 模糊推理的性质
2.5.5 模糊控制中常见的两种模糊推理模型
2.6 基于mamdani模型的模糊控制
2.6.1 模糊控制器的基本结构和组成
2.6.2 模糊控制的离线计算
2.6.3 模糊控制的在线计算
2.6.4 模糊控制系统的分析和设计
2.7 基于t-s模型的模糊控制
2.7.1 t-s模糊模型的表示
2.7.2 t-s模糊模型的建模
2.7.3 基于模糊状态方程模型的系统稳定性分析
2.7.4 基于模糊状态方程模型的平滑控制器设计
2.7.5 基于模糊状态方程模型的切换控制器设计
2.8 自适应模糊控制
2.8.1 基于性能反馈的直接自适应模糊控制
2.8.2 基于模糊模型求逆的间接自适应模糊控制
第3章 神经网络控制
3.1 概述
3.1.1 神经元模型
3.1.2 人工神经网络
3.1.3 生物神经网络系统与计算机处理信息的比较
3.1.4 神经网络的发展概况
3.2 前馈神经网络
3.2.1 感知器网络
3.2.2 bp网络
3.2.3 bp网络学习算法的改进
3.2.4 神经网络的训练
3.3 反馈神经网络
3.3.1 离散hopfield网络
3.3.2 连续hopfield网络
3.3.3 boltzmann机
3.4 局部逼近神经网络
3.4.1 cmac神经网络
3.4.2 b样条神经网络
3.4.3 径向基函数神经网络
3.5 模糊神经网络
3.5.1 基于mamdani模型的模糊神经网络
3.5.2 基于t-s模型的模糊神经网络
3.6 递归神经网络
3.6.1 引言
3.6.2 elman网络
3.6.3 esn网络
3.6.4 shesn网络
3.7 基于神经网络的系统建模与辨识
3.7.1 概述
3.7.2 逼近理论与网络建模
3.7.3 利用多层静态网络的系统辨识
3.7.4 利用动态网络的系统辨识
3.7.5 利用模糊神经网络的系统辨识
3.8 神经网络控制
3.8.1 概述
3.8.2 神经网络控制结构
3.8.3 基于全局逼近神经网络的控制
3.8.4 基于局部逼近神经网络的控制
3.8.5 模糊神经网络控制
3.8.6 有待解决的问题
3.9 神经网络在机器人控制中的应用
3.9.1 神经网络运动学控制
3.9.2 神经网络动力学控制
3.9.3 神经网络路径规划
第4章 专家控制
4.1 概述
4.1.1 专家控制的由来
4.1.2 专家系统
4.1.3 专家控制的研究状况和分类
4.2 专家控制的基本原理
4.2.1 专家控制的功能目标
4.2.2 控制作用的实现
4.2.3 设计规范和运行机制
4.3 专家控制系统的典型结构
4.3.1 系统结构
4.3.2 系统实现
4.4 专家控制的示例
4.4.1 自动调整过程
4.4.2 自动调整过程的实现
4.5 专家控制技术的研究课题
4.5.1 实时推理
4.5.2 知识获取
4.5.3 专家控制系统的稳定性分析
4.6 一种仿人智能控制
4.6.1 概念和定义
4.6.2 原理和结构
4.6.3 仿人智能控制的特点
第5章 学习控制
5.1 概述
5.1.1 学习控制问题的提出
5.1.2 学习控制的表述
5.1.3 学习控制与自适应控制
5.1.4 学习控制的研究状况和分类
5.2 基于模式识别的学习控制
5.2.1 学习控制系统的一般形式
5.2.2 模式分类
5.2.3 可训t练控制器
5.2.4 线性再励学习控制
5.2.5 bayes学习控制
5.2.6 基于模式识别的其他学习控制方法
5.2.7 研究课题
5.3 基于迭代和重复的学习控制
5.3.1 迭代和重复自学习控制的基本原理
5.3.2 异步自学习控制
5.3.3 异步自学习控制时域法
5.3.4 异步自学习控制频域法
5.4 联结主义学习控制
5.4.1 基本思想
5.4.2 联结主义学习系统的实现原理
5.4.3 联结主义学习控制系统的结构
5.4.4 研究课题
第6章 分层递阶智能控制
6.1 一般结构原理
6.2 组织级
6.3 协调级
6.3.1 协调级的原理结构
6.3.2 petri网转换器
6.3.3 协调级的petri网结构
6.3.4 协调级结构的决策和学习
6.4 执行级
第7章 智能优化方法
7.1 概述
7.2 遗传算法
7.2.1 引言
7.2.2 遗传算法的工作原理及操作步骤
7.2.3 遗传算法的实现及改进
7.2.4 遗传算法应用举例
7.2.5 遗传算法中的联结关系
7.3 粒子群优化算法
7.3.1 引言
7.3.2 粒子群优化算法简介
7.3.3 粒子群优化算法应用举例
7.4 蚁群优化算法
7.4.1 引言
7.4.2 蚁群优化算法简介
7.4.3 蚁群优化算法应用举例
7.5 人工免疫算法
7.5.1 引言
7.5.2 人工免疫系统(ais)
7.6 分布估计算法
7.6.1 引言
7.6.2 一个简单的分布估计算法
7.6.3 基于不同概率图模型的分布估计算法
7.6.4 基于联结关系检测的分布估计算法
7.6.5 连续域的分布估计算法
7.6.6 基于概率模型的其他相关算法
7.6.7 分布估计算法进一步需要研究的问题
参考文献