本书旨在介绍量子光学中的量子统计力学应用方法和其在单模激光和光学双稳态中的量子理论中的应用。和推导Fokker-Planck方程的更标准方法一起讨论了Drummond 和Gardiner的广义表示。特别阐述了用正p表示表述的光学双稳态理论和小的双稳态系统。这是一本研究生级别的教程,是连接主方程方法和当前研究的一座桥梁。
目次:主方程和Fokker-Planck方程:量子力学中的耗散:主方程方法;双能级原子和 自激发发射;电磁场的量子-经典对应:Glauber-Sudarshan P表示;电磁场Ⅱ的量子-经典对应: P,Q和Wigner表示;Fokker-Planck方程和*微分方程;双能级原子的量子-经典对应;单模型均匀展宽激光器Ⅰ:基础;单模型均匀展宽激光器Ⅱ:相变空间分析。
读者对象:物理、光学专业的研究生和研究人员。
Volume 1. Master Equations and Fokker-Planck Equations
1. Dissipation in Quantum Mechanics
The Master Equation Approach
1.1 Introduction
1.2 Inadequacy of an Ad Hoc Approach
1.3 System Plus R,eservoir Approach
1.3.1 The Schrodinger Equation in Integro-Differential Form
1.3.2 Born and Markov Approximations
1.3.3 The Markov Approximation and Reservoir Correlations
1.4 The Damped Harmonic Oscillator
1.4.1 Master Equation for the Damped Harmonic Oscillator
1.4.2 Some Limitations
1.4.3 Expectation Values and Commutation Relations
1.5 Two-Time Averages and the Quantum Regression Formula
1.5.1 Formal R,esults
1.5.2 Quantum Regression for a Complete Set of Operators
1.5.3 Correlation Functions for the Damped Harmonic Oscillator
2. Two-Level Atoms and Spontaneous Enussion
2.1 Two-Level Atom as a Pseudo-Spin System
2.2 Spontaneous Emission in the Master Equation Approach
2.2.1 Master Equation for a R,adiatively Damped Two-Level Atom
2.2.2 The Einstein A Coefficient
2.2.3 Matrix Element Equations, Correlation Functions, and Spontaneous Emission Spectrum
2.2.4 Phase Destroying Processes
2.3 Resonance Fluorescence
2.3.1 The Scattered Field
2.3.2 Master Equation for a Two-Level Atom
Driven by a Classical Field
2.3.3 Optical Bloch Equations and Dressed States
2.3.4 The Fluorescence Spect.rum
2.3.5 Seconcl-Order Coherence
2.3.6 Photon Antibunching and Squeezing
3. Quantum-Classical Correspondence for the Electromagnetic Field I:
The Glauber-Sudarshan P Representation
3.1 The Glauber-Sudarshan P Representation
3.1.1 Coherent States
3.1.2 Diagonal Representation for the Density Operator Using Coherent States
3.1.3 Examples: Coherent States, Thermal States, and Fock States
3.1.4 Fokker-Planck Equation for the Damped Harmonic Oscillator
3.1.5 Solution of the Fokker-Planck Equation
3.2 The Characteristic Function for Normal-Ordered Averages
3.2.1 Operator Averages and the Characteristic Function
3.2.2 Derivation of the Fokker-Planck Equation Using the Characteristic Function
……
Volume 2. Modern Topics