测量黏度及其非线性的声波传感器系统设计和应用(Acoustic Wave Sensor System for Measuring Viscosity and its Nonlinearity)
定 价:68 元
- 作者:吴佩萱、王晗 著
- 出版时间:2019/11/1
- ISBN:9787122350183
- 出 版 社:化学工业出版社
- 中图法分类:TB933
- 页码:105
- 纸张:
- 版次:01
- 开本:16开
本书系统介绍了测量黏度及其非线性的声波传感器系统设计理论、生产工艺和工程应用以及在现代经济社会发展中的重要价值。全书共分六个章节,第1章介绍了传统黏度测量技术以及各种声波传感器技术的优缺点,同时也介绍了关于黏度、牛顿流体、非牛顿流体等方面的基础知识。第2章详细介绍了磁致伸缩传感器谐振行为的基础研究以及在传感器系统中的位置效应,介绍了多因素对谐振片测量信号的影响。第3章介绍了磁致伸缩传感器测量流体黏度及其非线性特性,并详细介绍了不同尺寸磁致伸缩传感器在多种流体中的频率响应和Q值特性。第4章介绍了压电悬臂梁传感器测量流体黏度及其非线性特性以及传感器在多种流体中的频率响应和Q值特性,同时详细介绍了传感器系统的搭建。第5章介绍了黏度传感器系统的模拟技术和设计原理,详细介绍了基于牛顿流体的黏度传感器系统建模和基于非牛顿流体的黏度传感器系统建模,并与实验数据做了比较。第6章介绍了黏度传感器的进展和应用展望。
本书特色鲜明,在机械工程、汽车工程、环境监测以及国防工业等领域有着广泛的应用和重要的学术研究参考价值。
吴佩萱,广东工业大学机电工程学院,副教授,吴佩萱,美国奥本大学 (Auburn University) 材料工程学博士,美国材料学会成员。广东省第五批“珠江人才计划”引进创新科研人才,深圳市科创委专家。曾任美国卡特彼勒公司(Caterpillar Inc. CAT) 研究员,美国普渡大学 (Purdue University) 机械工程技术系Research Scientist。近年来一直从事传感器及智能材料的研究,成功研发了高灵敏度便携式磁致伸缩传感器系统。近5年发表国际学术论文30篇(其中SCI检索收录20余篇,单篇正面引用超过150次),担任Materials Letters, Polymer, Measurement等国际知名SCI杂志审稿人;申请美国、中国发明专利35件,已授权10件。在传感器及食品安全检测技术、健康等领域以第*一发明人身份拥有多项发明专利授权。主持承担多项省国家*级基金项目,其中包括广东省“珠江人才计划”引进创新团队项目(2014ZT05G157)在研,城市轨道交通网络控制芯片与系统(2016/02-2021/01)子课题“列车健康状态监测分析仪器的研发与产业化”负责人(经费700万元)/创新团队核心成员(排名前三);广东省自然科学基金项目(2018A030313246)负责人;美国国防部项目(DOD),全天候车辆引擎条件监控系统项目(Condition Based Maintenance for Military Vehicles),$1,000,000.00/年。
Chapter 1 Introduction1
1.1Background & Identification of the Current Issue1
1.2Viscosity,Newtonian & Non-Newtonian Liquids2
1.2.1General Introduction of Viscosity2
1.2.2Newtonian & Non-Newtonian Liquids5
1.2.3Different Models of Typical Non-Newtonian Liquids6
1.2.4Temperature Dependence of Liquid Viscosity8
1.2.5Engine Oils and Non-Linear Behaviors of Viscosity in Engine Oils9
1.3Conventional Methods10
1.3.1U-Tube Viscometer11
1.3.2Falling Ball Viscometers14
1.3.3Rotational Viscometers17
1.4Active Acoustic Wave (AW) Resonators as Viscometer and Current Research19
1.4.1Vibrating Viscometers19
1.4.2Current Research on AW Viscometer (Advantage over Traditional One,and Challenges)21
1.5Research Objectives25
References26
Chapter 2 Fundamental Study of Magnetostrictive Strip Resonance Behaviors and Location Effects in Pick-up Coils30
2.1Introductions30
2.2Configuration of Magnetostrictive Strip Sensor32
2.3Current Characterizations of Resonance Behaviors of Magnetostrictive Strips34
2.4Experimental and Measurement Setup35
2.4.1Lock-in Amplifier Method35
2.4.2Impedance Analyzer Method38
2.4.3Network Analyzer Method38
2.5Characterization and Experiment Results Discussion38
2.5.1Resonance Frequency of Magnetostrictive Sensor38
2.5.2Effect of External DC Bias Magnetic Field on Resonance Behaviors of Strip Sensor39
2.5.3Effect of AC Driving Magnetic Field on Resonance Behaviors of Strip Sensor43
2.5.3.1Lock-in Amplifier Method44
2.5.3.2Impedance Analyzer Method45
2.5.3.3Network Analyzer Method48
2.5.3.4Conclusion48
2.5.4Comparison of Impedance Analyzer Method and Lock-in Amplifier vMethod50
2.5.5Comparison of the Influence of Different Coils on Resonance Behaviors of Magnetostrictive Strip by Impedance Analyzer Method50
2.5.6Location Effect of Magnetostrictive Strip Sensor in Pick-up Coils53
2.6Conclusions56
References56
Chapter 3 Magnetostrictive Strip Sensors to Identify the Nonlinearity of Viscosity59
3.1Introduction59
3.2Experimental and Measurement Setup60
3.3Determination of Three Characteristic Frequencies61
3.4Comparison of the Performances of Different Length Magnetostrictive Strip Sensors in Oils64
3.5Comparison of the Performances of Different Length-ratio Magnetostrictive Strip Sensors in Oils67
3.6The Performances of 40mm×3mm×30μm Magnetostrictive Strip Sensor in Oils at Different Temperatures68
3.7Conclusions71
References72
Chapter 4 Piezoelectric Cantilever Sensors to Identify the Nonlinearity of Viscosity73
4.1Introduction73
4.2Configuration of Piezoelectric Cantilever Sensor74
4.3Theory76
4.4Experimental and Measurement Setup79
4.5The Performance Comparison of PZT Cantilevers with Same Length and Thickness but Different Width and Performance Comparison of PZT Cantilevers with Different Length but Same Width and Thickness81
4.6Conclusions85
References86
Chapter 5 Numerical Simulations to Identify the Nonlinearity of Viscosity87
5.1Introduction87
5.2Theoretical Model (in Newtonian & Non-Newtonian Liquids) and Numerical Simulation88
5.3Model in Newtonian Liquids and Numerical Simulation89
5.3.1The Study of Relationship of Three Characteristic Frequencies with B Value97
5.4Model in Non-Newtonian Liquids and Numerical Simulation100
References102
Chapter 6 Conclusions and Perspectives103