关于我们
书单推荐
新书推荐
|
信号与系统(第二版)(英文版) 本书是美国麻省理工学院的经典教材之一,讨论了信号与系统分析的基本理论、基本分析方法及其应用。全书共分11章,主要讲述了线性系统的基本理论、信号与系统的基本概念、线性时不变系统、连续与离散信号的傅里叶表示、傅里叶变换以及时域和频域系统的分析方法等内容。本书作者使用了大量在滤波、采样、通信和反馈系统中的实例,并行讨论了连续系统、离散系统、时域系统和频域系统的分析方法,使读者能透彻地理解各种信号系统的分析方法并比较其异同。 适读人群 :本书可作为通信与电子系统类、自动化类以及全部电类专业的信号与系统双语教学课程的教材,也可供所有从事信息获取、转换、传输及处理工作的其他专业研究生、教师和广大科技工作者参考。 本书是美国麻省理工学院的经典教材之一,讨论了信号与系统分析的基本理论、基本分析方法及其应用。 PREFACE This book is the second edition of a text designed for undergraduate courses in signals and systems. While such courses are frequently found in electrical engineering curricula, the concepts and techniques that form the core of the subject are of fundamental importance in all engineering disciplines. In fact, the scope of potential and actual applications of the methods of signal and system analysis continues to expand as engineers are confronted with new challenges involving the synthesis or analysis of complex processes. For these reasons we feel that a course in signals and systems not only is an essential element in an engineering program but also can be one of the most rewarding, exciting, and useful courses that engineering students take during their undergraduate education. Our treatment of the subject of signals and systems in this second edition maintains the same general philosophy as in the first edition but with significant rewriting, restructuring, and additions. These changes are designed to help both the instructor in presenting the subject material and the student in mastering it. In the preface to the first edition we stated that our overall approach to signals and systems had been guided by the continuing developments in technologies for signal and system design and implementation, which made it increasingly important for a student to have equal familiarity with techniques suitable for analyzing and synthesizing both continuous-time and discrete-time systems. As we write the preface to this second edition, that observation and guiding principle are even more true than before. Thus, while students studying signals and systems should certainly have a solid foundation in disciplines based on the laws of physics, they must also have a firm grounding in the use of computers for the analysis of phenomena and the implementation of systems and algorithms. As a consequence, engineering curricula now reflect a blend of subjects, some involving continuous-time models and others focusing on the use of computers and discrete representations. For these reasons, signals and systems courses that bring discrete-time and continuous-time concepts together in a unified way play an increasingly important role in the education of engineering students and in their preparation for current and future developments in their chosen fields. It is with these goals in mind that we have structured this book to develop in parallel the methods of analysis for continuous-time and discrete-time signals and systems. This approach also offers a distinct and extremely important pedagogical advantage. Specifically, we are able to draw on the similarities between continuous- and discrete-time methods in order to share insights and intuition developed in each domain. Similarly, we can exploit the differences between them to sharpen an understanding of the distinct properties of each. In organizing the material both originally and now in the second edition, we have also considered it essential to introduce the student to some of the important uses of the basic methods that are developed in the book. Not only does this provide the student with an appreciation for the range of applications of the techniques being learned and for directions for further study, but it also helps to deepen understanding of the subject. To achieve this goal we include introductory treatments on the subjects of filtering, communications, sampling, discrete-time processing of continuous-time signals, and feedback. In fact, in one of the major changes in this second edition, we have introduced the concept of frequency-domain filtering very early in our treatment of Fourier analysis in order to provide both motivation for and insight into this very important topic. In addition, we have again included an up-to-date bibliography at the end of the book in order to assist the student who is interested in pursuing additional and more advanced studies of the methods and applications of signal and system analysis. The organization of the book reflects our conviction that 美国麻省理工学院电气与计算机科学系Ford教授,该校电子学研究实验室(RLE)首席研究员。美国国家工程院院士,IEEE会士。研究兴趣为通用领域的信号处理及应用,曾因出色的科研和教学工作多次获奖。另著有Discrete-Time Signal Processing和Signals, Systems and Inference。<BR>美国麻省理工学院电气与计算机科学系Ford教授,该校电子学研究实验室(RLE)首席研究员。美国国家工程院院士,IEEE会士。研究兴趣为通用领域的信号处理及应用,曾因出色的科研和教学工作多次获奖。另著有Discrete-Time Signal Processing和Signals, Systems and Inference。
CONTENTS 目录
Chapter 1 Signals and Systems 信号与系统 1.0 Introduction 引言 1.1 Continuous-Time and Discrete-Time Signals 连续时间信号和离散时间信号 1.1.1 Examples and Mathematical Representation 举例与数学表示 1.1.2 Signal Energy and Power 信号能量与功率 1.2 Transformations of the Independent Variable 自变量的变换 1.2.1 Examples of Transformations of the Independent Variable 自变量变换举例 1.2.2 Periodic Signals 周期信号 1.2.3 Even and Odd Signals 偶信号与奇信号 1.3 Exponential and Sinusoidal Signals 指数信号与正弦信号 1.3.1 Continuous-Time Complex Exponential and Sinusoidal Signals 连续时间复指数信号与正弦信号 1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signals 离散时间复指数信号与正弦信号 1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials 离散时间复指数序列的周期性质 1.4 The Unit Impulse and Unit Step Functions 单位冲激函数与单位阶跃函数 1.4.1 The Discrete-Time Unit Impulse and Unit Step Sequences 离散时间单位脉冲序列和单位阶跃序列 1.4.2 The Continuous-Time Unit Step and Unit Impulse Functions 连续时间单位阶跃函数和单位冲激函数 1.5 Continuous-Time and Discrete-Time Systems 连续时间系统和离散时间系统 1.5.1 Simple Examples of Systems 简单系统举例 1.5.2 Interconnections of Systems 系统的互联 1.6 Basic System Properties 基本系统性质 1.6.1 Systems with and without Memory 有记忆系统与无记忆系统 1.6.2 Invertibility and Inverse Systems 可逆性与可逆系统 1.6.3 Causality 因果性 1.6.4 Stability 稳定性 1.6.5 Time Invariance 时不变性 1.6.6 Linearity 线性 1.7 Summary 小结 Problems 习题 Chapter 2 Linear Time-Invariant Systems 线性时不变系统 2.0 Introduction 引言 2.1 Discrete-Time LTI Systems: The Convolution Sum 离散时间线性时不变系统:卷积和 2.1.1 The Representation of Discrete-Time Signals in Terms of Impulses 用脉冲表示离散时间信号 2.1.2 The Discrete-Time Unit Impulse Response and the Convolution-Sum Representation of LTI Systems 离散时间线性时不变系统的单位脉冲响应及卷积和表示 2.2 Continuous-Time LTI Systems: The Convolution Integral 连续时间线性时不变系统:卷积积分 2.2.1 The Representation of Continuous-Time Signals in Terms of Impulses 用冲激表示连续时间信号 2.2.2 The Continuous-Time Unit Impulse Response and the Convolution Integral Representation of LTI Systems 连续时间线性时不变系统的单位冲激响应及卷积积分表示 2.3 Properties of Linear Time-Invariant Systems 线性时不变系统的性质 2.3.1 The Commutative Property 交换律性质 2.3.2 The Distributive Property 分配律性质 2.3.3 The Associative Property 结合律性质 2.3.4 LTI Systems with and without Memory 有记忆和无记忆线性时不变系统 2.3.5 Invertibility of LTI Systems 线性时不变系统的可逆性 2.3.6 Causality for LTI Systems 线性时不变系统的因果性 2.3.7 Stability for LTI Systems 线性时不变系统的稳定性 2.3.8 The Unit Step Response of an LTI System 线性时不变系统的单位阶跃响应 2.4 Causal LTI Systems Described by Differential and Difference Equations 用微分方程和差分方程描述的因果线性时不变系统 2.4.1 Linear Constant-Coefficient Differential Equations 线性常系数微分方程 2.4.2 Linear Constant-Coefficient Difference Equations 线性常系数差分方程 2.4.3 Block Diagram Representations of First-Order Systems Described by Differential and Difference Equations 用微分方程和差分方程描述的一阶系统的方框图表示 2.5 Singularity Functions 奇异函数 2.5.1 The Unit Impulse as an Idealized Short Pulse 作为理想化短脉冲的单位冲激 2.5.2 Defining the Unit Impulse through Convolution 通过卷积定义单位冲激 2.5.3 Unit Doublets and Other Singularity Functions 单位冲激偶和其他奇异函数 2.6 Summary 小结 Problems 习题 Chapter 3 Fourier Series Representation of Periodic Signals 周期信号的傅里叶级数表示 3.0 Introduction 引言 3.1 A Historical Perspective 历史回顾 3.2 The Response of LTI Systems to Complex Exponentials 线性时不变系统对复指数信号的响应 3.3 Fourier Series Representation of Continuous-Time Periodic Signals 连续时间周期信号的傅里叶级数表示 3.3.1 Linear Combinations of Harmonically Related Complex Exponentials 成谐波关系的复指数信号的线性组合 3.3.2 Determination of the Fourier Series Representation of a Continuous-Time Periodic Signal 连续时间周期信号傅里叶级数表示的确定 3.4 Convergence of the Fourier Series 傅里叶级数的收敛 3.5 Properties of Continuous-Time Fourier Series 连续时间傅里叶级数性质 3.5.1 Linearity 线性性质 3.5.2 Time Shifting 时移性质 3.5.3 Time Reversal 时间反转性质 3.5.4 Time Scaling 时域尺度变换性质 3.5.5 Multiplication 相乘性质 3.5.6 Conjugation and Conjugate Symmetry 共轭与共轭对称性质 3.5.7 Parseval’s Relation for Continuous-Time Periodic Signals 连续时间周期信号的帕塞瓦尔定理 3.5.8 Summary of Properties of the Continuous-Time Fourier Series 连续时间傅里叶级数性质列表 3.5.9 Examples 举例 3.6 Fourier Series Representation of Discrete-Time Periodic Signals 离散时间周期信号的傅里叶级数表示 3.6.1 Linear Combinations of Harmonically Related Complex Exponentials 成谐波关系的复指数信号的线性组合 3.6.2 Determination of the Fourier Series Representation of a Periodic Signal 周期信号傅里叶级数表示的确定 3.7 Properties of Discrete-Time Fourier Series 离散时间傅里叶级数性质 3.7.1 Multiplication 相乘性质 3.7.2 First Difference 一次差分性质 3.7.3 Parseval’s Relation for Discrete-Time Periodic Signals 离散时间周期信号的帕塞瓦尔定理 3.7.4 Examples 举例 3.8 Fourier Series and LTI Systems 傅里叶级数与线性时不变系统 3.9 Filtering 滤波 3.9.1 Frequency-Shaping Filters 频率成形滤波器 3.9.2 Frequency-Selective Filters 频率选择性滤波器 3.10 Examples of Continuous-Time Filters Described by Differential Equations 用微分方程描述的连续时间滤波器举例 3.10.1 A Simple RC Lowpass Filter 简单RC低通滤波器 3.10.2 A Simple RC Highpass Filter 简单RC高通滤波器 3.11 Examples of Discrete-Time Filters Described by Difference Equations 用差分方程描述的离散时间滤波器举例 3.11.1 First-Order Recursive Discrete-Time Filters 一阶递归离散时间滤波器 3.11.2 Nonrecursive Discrete-Time Filters 非递归离散时间滤波器 3.12 Summary 小结 Problems 习题 Chapter 4 The Continuous-Time Fourier Transform 连续时间傅里叶变换 4.0 Introduction 引言 4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier Transform 非周期信号的表示:连续时间傅里叶变换 4.1.1 Development of the Fourier Transform Representation of an Aperiodic Signal 非周期信号傅里叶变换表示的导出 4.1.2 Convergence of Fourier Transforms 傅里叶变换的收敛 4.1.3 Examples of Continuous-Time Fourier Transforms 连续时间傅里叶变换举例 4.2 The Fourier Transform for Periodic Signals 周期信号的傅里叶变换 4.3 Properties of the Continuous-Time Fourier Transform 连续时间傅里叶变换性质 4.3.1 Linearity 线性性质 4.3.2 Time Shifting 时移性质 4.3.3 Conjugation and Conjugate Symmetry 共轭与共轭对称性质 4.3.4 Differentiation and Integration 微分与积分性质 4.3.5 Time and Frequency Scaling 时间与频率的尺度变换性质 4.3.6 Duality 对偶性质 4.3.7 Parseval’s Relation 帕塞瓦尔定理 4.4 The Convolution Property 卷积性质 4.4.1 Examples 举例 4.5 The Multiplication Property 相乘性质 4.5.1 Frequency-Selective Filtering with Variable Center Frequency 具有可变中心频率的频率选择性滤波 4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs 傅里叶变换性质和基本傅里叶变换对列表 4.7 Systems Characterized by Linear Constant-Coefficient Differential Equations 由线性常系数微分方程表征的系统 4.8 Summary 小结 Problems 习题 Chapter 5 The Discrete-Time Fourier Transform 离散时间傅里叶变换 5.0 Introduction 引言 5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform 非周期信号的表示:离散时间傅里叶变换 5.1.1 Development of the Discrete-Time Fourier Transform 离散时间傅里叶变换的导出 5.1.2 Examples of Discrete-Time Fourier Transforms 离散时间傅里叶变换举例 5.1.3 Convergence Issues Associated with the Discrete-Time Fourier Transform 关于离散时间傅里叶变换的收敛问题 5.2 The Fourier Transform for Periodic Signals 周期信号的傅里叶变换 5.3 Properties of the Discrete-Time Fourier Transform 离散时间傅里叶变换性质 5.3.1 Periodicity of the Discrete-Time Fourier Transform 离散时间傅里叶变换的周期性 5.3.2 Linearity of the Fourier Transform 线性性质 5.3.3 Time Shifting and Frequency Shifting 时移与频移性质 5.3.4 Conjugation and Conjugate Symmetry 共轭与共轭对称性质 5.3.5 Differencing and Accumulation 差分与累加性质 5.3.6 Time Reversal 时间反转性质 5.3.7 Time Expansion 时域扩展性质 5.3.8 Differentiation in Frequency 频域微分性质 5.3.9 Parseval’s Relation 帕塞瓦尔定理 5.4 The Convolution Property 卷积性质 5.4.1 Examples 举例 5.5 The Multiplication Property 相乘性质 5.6 Tables of Fourier Transform Properties and Basic Fourier Transform Pairs 傅里叶变换性质和基本傅里叶变换对列表 5.7 Duality 对偶性质 5.7.1 Duality in the Discrete-Time Fourier Series 离散时间傅里叶级数的对偶性质 5.7.2 Duality between the Discrete-Time Fourier Transform and the Continuous-Time Fourier Series 离散时间傅里叶变换和连续时间傅里叶级数之间的对偶性质 5.8 Systems Characterized by Linear Constant-Coefficient Difference Equations 由线性常系数差分方程表征的系统 5.9 Summary 小结 Problems 习题 Chapter 6 Time and Frequency Characterization of Signals and Systems 信号与系统的时域和频域特性 6.0 Introduction 引言 6.1 The Magnitude-Phase Representation of the Fourier Transform 傅里叶变换的模和相位表示 6.2 The Magnitude-Phase Representation of the Frequency Response of LTI Systems 线性时不变系统频率响应的模和相位表示 6.2.1 Linear and Nonlinear Phase 线性与非线性相位 6.2.2 Group Delay 群延迟 6.2.3 Log-Magnitude and Bode Plots 对数模和伯德图 6.3 Time-Domain Properties of Ideal Frequency-Selective Filters 理想频率选择性滤波器的时域特性 6.4 Time-Domain and Frequency-Domain Aspects of Nonideal Filters 非理想滤波器的时域和频域特性讨论 6.5 First-Order and Second-Order Continuous-Time Systems 一阶与二阶连续时间系统 6.5.1 First-Order Continuous-Time Systems 一阶连续时间系统 6.5.2 Second-Order Continuous-Time Systems 二阶连续时间系统 6.5.3 Bode Plots for Rational Frequency Responses 有理型频率响应的伯德图 6.6 First-Order and Second-Order Discrete-Time Systems 一阶与二阶离散时间系统 6.6.1 First-Order Discrete-Time Systems 一阶离散时间系统 6.6.2 Second-Order Discrete-Time Systems 二阶离散时间系统 6.7 Examples of Time- and Frequency-Domain Analysis of Systems 系统的时域分析与频域分析举例 6.7.1 Analysis of an Automobile Suspension System 汽车减震系统的分析 6.7.2 Examples of Discrete-Time Nonrecursive Filters 离散时间非递归滤波器举例 6.8 Summary 小结 Problems 习题 Chapter 7 Sampling 采样 7.0 Introduction 引言 7.1 Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem 用信号样本表示连续时间信号:采样定理 7.1.1 Impulse-Train Sampling 冲激串采样 7.1.2 Sampling with a Zero-Order Hold 零阶保持采样 7.2 Reconstruction of a Signal from Its Samples Using Interpolation 利用内插由样本重建信号 7.3 The Effect of Undersampling: Aliasing 欠采样的效果:混叠现象 7.4 Discrete-Time Processing of Continuous-Time Signals 连续时间信号的离散时间处理 7.4.1 Digital Differentiator 数字微分器 7.4.2 Half-Sample Delay 半采样间隔延迟 7.5 Sampling of Discrete-Time Signals 离散时间信号采样 7.5.1 Impulse-Train Sampling 脉冲串采样 7.5.2 Discrete-Time Decimation and Interpolation 离散时间抽取与内插 7.6 Summary 小结 Problems 习题 Chapter 8 Communication Systems 通信系统 8.0 Introduction 引言 8.1 Complex Exponential and Sinusoidal Amplitude Modulation 复指数与正弦幅度调制 8.1.1 Amplitude Modulation with a Complex Exponential Carrier 复指数载波的幅度调制 8.1.2 Amplitude Modulation with a Sinusoidal Carrier 正弦载波的幅度调制 8.2 Demodulation for Sinusoidal AM 正弦幅度调制的解调 8.2.1 Synchronous Demodulation 同步解调 8.2.2 Asynchronous Demodulation 非同步解调 8.3 Frequency-Division Multiplexing 频分多路复用 8.4 Single-Sideband Sinusoidal Amplitude Modulation 单边带正弦幅度调制 8.5 Amplitude Modulation with a Pulse-Train Carrier 用脉冲串进行载波的幅度调制 8.5.1 Modulation of a Pulse-Train Carrier 脉冲串载波调制 8.5.2 Time-Division Multiplexing 时分多路复用 8.6 Pulse-Amplitude Modulation 脉冲幅度调制 8.6.1 Pulse-Amplitude Modulated Signals 脉冲幅度已调信号 8.6.2 Intersymbol Interference in PAM Systems 脉冲幅度调制系统中的码间干扰 8.6.3 Digital Pulse-Amplitude and Pulse-Code Modulation 数字脉冲幅度调制和脉冲编码调制 8.7 Sinusoidal Frequency Modulation 正弦频率调制 8.7.1 Narrowband Frequency Modulation 窄带频率调制 8.7.2 Wideband Frequency Modulation 宽带频率调制 8.7.3 Periodic Square-Wave Modulating Signals 周期方波调制信号 8.8 Discrete-Time Modulation 离散时间调制 8.8.1 Discrete-Time Sinusoidal Amplitude Modulation 离散时间正弦幅度调制 8.8.2 Discrete-Time Transmodulation 离散时间调制转换 8.9 Summary 小结 Problems 习题 Chapter 9 The Laplace Transform 拉普拉斯变换 9.0 Introduction 引言 9.1 The Laplace Transform 拉普拉斯变换 9.2 The Region of Convergence for Laplace Transforms 拉普拉斯变换的收敛域 9.3 The Inverse Laplace Transform 拉普拉斯逆变换 9.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot 利用零极点图对傅里叶变换进行几何求值 9.4.1 First-Order Systems 一阶系统 9.4.2 Second-Order Systems 二阶系统 9.4.3 All-Pass Systems 全通系统 9.5 Properties of the Laplace Transform 拉普拉斯变换的性质 9.5.1 Linearity of the Laplace Transform 线性性质 9.5.2 Time Shifting 时移性质 9.5.3 Shifting in the s-Domain s域平移性质 9.5.4 Time Scaling 时域尺度变换性质 9.5.5 Conjugation 共轭性质 9.5.6 Convolution Property 卷积性质 9.5.7 Differentiation in the Time Domain 时域微分性质 9.5.8 Differentiation in the s-Domain s域微分性质 9.5.9 Integration in the Time Domain 时域积分性质 9.5.10 The Initial-and Final-Value Theorems 初值定理与终值定理 9.5.11 Table of Properties 性质列表 9.6 Some Laplace Transform Pairs 常用拉普拉斯变换对 9.7 Analysis and Characterization of LTI Systems Using the Laplace Transform 用拉普拉斯变换分析与表征线性时不变系统 9.7.1 Causality 因果性 9.7.2 Stability 稳定性 9.7.3 LTI Systems Characterized by Linear Constant-Coefficient Differential Equations 由线性常系数微分方程表征的线性时不变系统 9.7.4 Examples Relating System Behavior to the System Function 系统特性与系统函数的关系举例 9.7.5 Butterworth Filters 巴特沃思滤波器 9.8 System Function Algebra and Block Diagram Representations 系统函数的代数属性与方框图表示 9.8.1 System Functions for Interconnections of LTI Systems 线性时不变系统互联的系统函数 9.8.2 Block Diagram Representations for Causal LTI Systems Described by Differential Equations and Rational System Functions 由微分方程和有理系统函数描述的因果线性时不变系统的方框图表示 9.9 The Unilateral Laplace Transform 单边拉普拉斯变换 9.9.1 Examples of Unilateral Laplace Transforms 单边拉普拉斯变换举例 9.9.2 Properties of the Unilateral Laplace Transform 单边拉普拉斯变换性质 9.9.3 Solving Differential Equations Using the Unilateral Laplace Transform 利用单边拉普拉斯变换求解微分方程 9.10 Summary 小结 Problems 习题 Chapter 10 The z-Transform z变换 10.0 Introduction 引言 10.1 The z-Transform z变换 10.2 The Region of Convergence for the z-Transform z变换的收敛域 10.3 The Inverse z-Transform z逆变换 10.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot 利用零极点图对傅里叶变换进行几何求值 10.4.1 First-Order Systems 一阶系统 10.4.2 Second-Order Systems 二阶系统 10.5 Properties of the z-Transform z变换的性质 10.5.1 Linearity 线性性质 10.5.2 Time Shifting 时移性质 10.5.3 Scaling in the z-Domain z域尺度变换性质 10.5.4 Time Reversal 时间反转性质 10.5.5 Time Expansion 时间扩展性质 10.5.6 Conjugation 共轭性质 10.5.7 The Convolution Property 卷积性质 10.5.8 Differentiation in the z-Domain z域微分性质 10.5.9 The Initial-Value Theorem 初值定理 10.5.10 Summary of Properties 性质小结 10.6 Some Common z-Transform Pairs 常用z变换对 10.7 Analysis and Characterization of LTI Systems Using z-Transforms 利用z变换分析与表征线性时不变系统 10.7.1 Causality 因果性 10.7.2 Stability 稳定性 10.7.3 LTI Systems Characterized by Linear Constant-Coefficient Difference Equations 由线性常系数差分方程表征的线性时不变系统 10.7.4 Examples Relating System Behavior to the System Function 系统特性与系统函数的关系举例 10.8 System Function Algebra and Block Diagram Representations 系统函数的代数属性与方框图表示 10.8.1 System Functions for Interconnections of LTI Systems 线性时不变系统互联的系统函数 10.8.2 Block Diagram Representations for Causal LTI Systems Described by Difference Equations and Rational System Functions 由差分方程和有理系统函数描述的因果线性时不变系统的方框图表示 10.9 The Unilateral z-Transform 单边z变换 10.9.1 Examples of Unilateral z-Transforms and Inverse Transforms 单边z变换和单边z逆变换举例 10.9.2 Properties of the Unilateral z-Transform 单边z变换性质 10.9.3 Solving Difference Equations Using the Unilateral z-Transform 利用单边z变换求解差分方程 10.10 Summary 小结 Problems 习题 Chapter 11 Linear Feedback Systems 线性反馈系统 11.0 Introduction 引言 11.1 Linear Feedback Systems 线性反馈系统 11.2 Some Applications and Consequences of Feedback 反馈的某些应用及结果 11.2.1 Inverse System Design 逆系统设计 11.2.2 Compensation for Nonideal Elements 非理想元件的补偿 11.2.3 Stabilization of Unstable Systems 不稳定系统的稳定 11.2.4 Sampled-Data Feedback Systems 采样数据反馈系统 11.2.5 Tracking Systems 跟踪系统 11.2.6 Destabilization Caused by Feedback 反馈引起的不稳定 11.3 Root-Locus Analysis of Linear Feedback Systems 线性反馈系统的根轨迹分析法 11.3.1 An Introductory Example 一个例子 11.3.2 Equation for the Closed-Loop Poles 闭环极点方程 11.3.3 The End Points of the Root Locus: The Closed-Loop Poles for K = 0 and |K| =∞ 根轨迹的端点:K = 0和| K | =∞时的闭环极点 11.3.4 The Angle Criterion 角判据 11.3.5 Properties of the Root Locus 根轨迹的性质 11.4 The Nyquist Stability Criterion 奈奎斯特稳定判据 11.4.1 The Encirclement Property 围线性质 11.4.2 The Nyquist Criterion for Continuous-Time LTI Feedback Systems 连续时间线性时不变反馈系统的奈奎斯特判据 11.4.3 The Nyquist Criterion for Discrete-Time LTI Feedback Systems 离散时间线性时不变反馈系统的奈奎斯特判据 11.5 Gain and Phase Margins 增益和相位裕度 11.6 Summary 小结 Problems 习题 Appendix Partial-Fraction Expansion 部分分式展开 Bibliography 文献清单 Answers 基本题答案 Index 索引
你还可能感兴趣
我要评论
|