组合学是一门关于有限集的计数、存在性、构造和优化问题的数学学科。
《组合学:导论(影印版)》着重于前三类问题,内容包括:基本计数和存在性原理、分布、生成函数、递推关系、Polya理论、组合设计、纠错码、偏序集,以及图论的一些应用(包括树的计数、色多项式和Ramsey理论入门)。
阅读《组合学:导论(影印版)》只需掌握单变量微积分,并熟悉集合论和基本的证明技巧。
《组合学:导论(影印版)》着重论述了组合学的特点:双射和组合证明、递归分析和计数问题分类。
《组合学:导论(影印版)》适用范围极广,可用于组合数学的本科课程、离散数学的第二学期课程、应用数学的研究生入门课程,同时适合自学。
《组合学:导论(影印版)》之所以称为导论,在于分布在全书八章中的大约350个问题。这些问题可用来检查学习成果,也让读者为每节后的练习(共有470多个)做好准备。大部分章节以游记结尾,通过趣闻轶事、未解决问题、进一步阅读的建议以及与所闻所见有关的数学家传记的形式,为内容增色不少。
近年来,我国的科学技术取得了长足进步,特别是在数学等自然科学基础领域不断涌现出一流的研究成果。与此同时,国内的科研队伍与国外的交流合作也越来越密切,越来越多的科研工作者可以熟练地阅读英文文献,并在国际顶级期刊发表英文学术文章,在国外出版社出版英文学术著作。
然而,在国内阅读海外原版英文图书仍不是非常便捷。一方面,这些原版图书主要集中在科技、教育比较发达的大中城市的大型综合图书馆以及科研院所的资料室中,普通读者借阅不甚容易;另一方面,原版书价格昂贵,动辄上百美元,购买也很不方便。这极大地限制了科技工作者对于国外先进科学技术知识的获取,间接阻碍了我国科技的发展。
高等教育出版社本着植根教育、弘扬学术的宗旨服务我国广大科技和教育工作者,同美国数学会(American Mathematical Society)合作,在征求海内外众多专家学者意见的基础上,精选该学会近年出版的数十种专业著作,组织出版了“美国数学会经典影印系列”丛书。美国数学会创建于1888年,是国际上极具影响力的专业学术组织,目前拥有近30000会员和580余个机构成员,出版图书3500多种,冯·诺依曼、莱夫谢茨、陶哲轩等世界级数学大家都是其作者。本影印系列涵盖了代数、几何、分析、方程、拓扑、概率、动力系统等所有主要数学分支以及新近发展的数学主题。
我们希望这套书的出版,能够对国内的科研工作者、教育工作者以及青年学生起到重要的学术引领作用,也希望今后能有更多的海外优秀英文著作被介绍到中国。
David R.Mazur,is Associate Professor of Mathematics at Western New England College in Springfield, Massachusetts. He was born on October 23, 1971 in Washington, D.C. He received his undergraduate degree in mathematics from the University of Delaware in 1993, and also won the Department of Mathematical Sciences' William D. Clark prize for \"unusual ability\" in the major that year. He then received two fellowships for doctoral study in the Department of Mathematical Sciences (now the Department of Applied Mathematics and Statistics) at The Johns Hopkins University. From there he received his Master's in 1996 and his Ph.D. in 1999 under the direction of Leslie A. Hall, focusing on operations research, integer programming, and polyhedral combinatorics. His dissertation, Integer Programming Approaches to a Multi-Facility Location Problem, won first prize in the 1999 joint United Parcel Service/INFORMS Section on Location Analysis Dissertation Award Competition. The competition occurs once every two years to recognize outstanding dissertations in the field of location analysis.