本书基于麻省理工学院开设的概率论入门课程编写,内容全面,例题和习题丰富,结构层
次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、最小二乘估计等高级内容。
√ 从直观、自然的角度阐述概率
√ 适合理工科学生入门,便于自学
√ 配套网站提供习题参考答案
本书内容丰富,除了介绍概率论的基本知识点外,还介绍了矩母函数、最小二乘估计、泊松过程、马尔可夫过程和贝叶斯统计等内容。书中示例丰富、图文并茂,针对每节主题设计了相应的习题,还提供了部分难题的解答,便于读者自学。
本书多年来在美国麻省理工学院、斯坦福大学、加州大学等名校被用作概率课程教材,经过课堂检验和众多师生的反馈得以不断完善,是一本在表述简洁和推理严密之间取得优美平衡的经典作品。
【作者简介】
迪米特里?伯特瑟卡斯(Dimitri P. Bertsekas)
美国工程院院士,IEEE会士。1971年获美国麻省理工学院电子工程博士学位。长期在麻省理工学院执教,曾获得2001年度美国控制协会J. Ragazzini教育奖。他的研究领域涉及优化、控制、大规模计算、数据通信网络等,许多研究具有开创性贡献。著有《非线性规划》等十余部教材和专著,其中许多被麻省理工学院等名校用作研究生或本科生教材。
约翰?齐齐克利斯(John N. Tsitsiklis)
美国工程院院士,IEEE会士,麻省理工学院教授。分别于1980年、1981年、1984年在麻省理工学院获得学士、硕士、博士学位。他的研究成果颇丰,已发表学术论文上百篇。
【译者简介】
郑忠国
1965年研究生毕业于北京大学。曾任北京大学数学科学学院教授、博士生导师。长期从事数理统计的教学和科研工作,主要研究方向有非参数统计、可靠性统计和统计计算,发表论文近百篇。主持完成国家科研项目“不完全数据统计理论及其应用”,教育部博士点基金项目“应用统计方法研究”和“工业与医学中的应用统计研究”等。
童行伟
北京师范大学统计学院教授、博士生导师,主要从事生物统计、金融统计、稳健统计等领域的教学和研究工作。2000年就读于北京大学概率统计系,获得统计学博士学位。2005~2006年在美国密苏里大学哥伦比亚分校从事博士后研究工作。
第 1章 样本空间与概率 1
1.1 集合 2
1.1.1 集合运算 3
1.1.2 集合的代数 4
1.2 概率模型 4
1.2.1 样本空间和事件 5
1.2.2 选择适当的样本空间 6
1.2.3 序贯模型 6
1.2.4 概率律 6
1.2.5 离散模型 8
1.2.6 连续模型 10
1.2.7 概率律的性质 11
1.2.8 模型和现实 13
1.3 条件概率 16
1.3.1 条件概率是一个概率律 17
1.3.2 利用条件概率定义概率模型 20
1.4 全概率定理和贝叶斯准则 25
1.5 独立性 30
1.5.1 条件独立 32
1.5.2 一组事件的独立性 34
1.5.3 可靠性 35
1.5.4 独立试验和二项概率 36
1.6 计数法 38
1.6.1 计数准则 39
1.6.2 n选k排列 40
1.6.3 组合 41
1.6.4 分割 43
1.7 小结和讨论 45
1.8 习题 46
第 2章 离散随机变量 62
2.1 基本概念 62
2.2 概率质量函数 64
2.2.1 伯努利随机变量 66
2.2.2 二项随机变量 66
2.2.3 几何随机变量 67
2.2.4 泊松随机变量 68
2.3 随机变量的函数 69
2.4 期望、均值和方差 70
2.4.1 方差、矩和随机变量的函数的期望值规则 72
2.4.2 均值和方差的性质 75
2.4.3 常用随机变量的均值和方差 77
2.4.4 利用期望值进行决策 79
2.5 多个随机变量的联合概率质量函数 80
2.5.1 多个随机变量的函数 81
2.5.2 多于两个随机变量的情况 83
2.6 条件 85
2.6.1 某个事件发生的条件下的随机变量 85
2.6.2 给定另一个随机变量的值的条件下的随机变量 87
2.6.3 条件期望 90
2.7 独立性 95
2.7.1 随机变量和事件的独立性 95
2.7.2 随机变量之间的独立性 95
2.7.3 多个随机变量的独立性 99
2.7.4 若干个独立随机变量之和的方差 99
2.8 小结和讨论 101
2.9 习题 103
第3章 一般随机变量 121
3.1 连续随机变量和概率密度函数 121
3.1.1 期望 125
3.1.2 指数随机变量 126
3.2 累积分布函数 128
3.3 正态随机变量 132
3.4 多个随机变量的联合概率密度函数 138
3.4.1 联合累积分布函数 141
3.4.2 期望 141
3.4.3 多于两个随机变量的情况 142
3.5 条件 143
3.5.1 以事件为条件的随机变量 143
3.5.2 以另一个随机变量为条件的随机变量 146
3.5.3 条件期望 150
3.5.4 独立性 152
3.6 连续贝叶斯准则 155
3.6.1 关于离散随机变量的推断 156
3.6.2 基于离散观测值的推断 157
3.7 小结和讨论 158
3.8 习题 159
第4章 随机变量的高级主题 173
4.1 导出分布 173
4.1.1 线性函数 175
4.1.2 单调函数 177
4.1.3 两个随机变量的函数 179
4.1.4 独立随机变量和——卷积 183
4.1.5 卷积的图像计算法 186
4.2 协方差和相关 187
4.3 再论条件期望和条件方差 191
4.3.1 条件期望作为估计量 193
4.3.2 条件方差 194
4.4 矩母函数 197
4.4.1 从矩母函数到矩 199
4.4.2 矩母函数的可逆性 201
4.4.3 独立随机变量和 203
4.4.4 联合分布的矩母函数 206
4.5 随机数个独立随机变量和 206
4.6 小结和讨论 209
4.7 习题 210
第5章 极限理论 224
5.1 马尔可夫和切比雪夫不等式 225
5.2 弱大数定律 228
5.3 依概率收敛 230
5.4 中心极限定理 232
5.4.1 基于中心极限定理的近似 233
5.4.2 二项分布的棣莫弗-拉普拉斯近似 235
5.5 强大数定律 237
5.6 小结和讨论 239
5.7 习题 240
第6章 伯努利过程和泊松过程 249
6.1 伯努利过程 250
6.1.1 独立性和无记忆性 251
6.1.2 相邻到达间隔时间 254
6.1.3 第k次到达的时间 255
6.1.4 伯努利过程的分裂与合并 256
6.1.5 二项分布的泊松近似 257
6.2 泊松过程 260
6.2.1 区间内到达的次数 262
6.2.2 独立性和无记忆性 264
6.2.3 相邻到达时间 265
6.2.4 第k次到达的时间 266
6.2.5 泊松过程的分裂与合并 268
6.2.6 伯努利过程和泊松过程、随机变量和 270
6.2.7 随机插入的悖论 271
6.3 小结和讨论 273
6.4 习题 274
第7章 马尔可夫链 284
7.1 离散时间马尔可夫链 284
7.1.1 路径的概率 287
7.1.2 n步转移概率 288
7.2 状态的分类 291
7.3 稳态性质 294
7.3.1 长期频率解释 299
7.3.2 生灭过程 300
7.4 吸收概率和吸收的期望时间 303
7.4.1 吸收的期望时间 307
7.4.2 平均首访时间及回访时间 308
7.5 连续时间的马尔可夫链 309
7.5.1 利用离散时间马尔可夫链的近似 312
7.5.2 稳态性质 314
7.5.3 生灭过程 316
7.6 小结和讨论 316
7.7 习题 318
第8章 贝叶斯统计推断 340
8.1 贝叶斯推断与后验分布 344
8.2 点估计、假设检验、最大后验概率准则 350
8.2.1 点估计 352
8.2.2 假设检验 355
8.3 贝叶斯最小均方估计 358
8.3.1 估计误差的一些性质 363
8.3.2 多次观测和多参数情况 364
8.4 贝叶斯线性最小均方估计 365
8.4.1 一次观测的线性最小均方估计 365
8.4.2 多次观测和多参数情形 369
8.4.3 线性估计和正态模型 369
8.4.4 线性估计的变量选择 370
8.5 小结和讨论 370
8.6 习题 371
第9章 经典统计推断 381
9.1 经典参数估计 383
9.1.1 估计量的性质 383
9.1.2 最大似然估计 384
9.1.3 随机变量均值和方差的估计 388
9.1.4 置信区间 390
9.1.5 基于方差近似估计量的置信区间 391
9.2 线性回归 395
9.2.1 最小二乘公式的合理性 397
9.2.2 贝叶斯线性回归 399
9.2.3 多元线性回归 401
9.2.4 非线性回归 402
9.2.5 实际中的考虑 403
9.3 简单假设检验 404
9.4 显著性检验 413
9.4.1 一般方法 413
9.4.2 广义似然比和拟合优度检验 418
9.5 小结和讨论 421
9.6 习题 422
索引 433
附表 438
标准正态分布表 440