《材料物理性能》以物理基础理论为主线,突出材料物理性能主要分支的重要现象及其物理基础,内容涵盖固体材料的热、电、磁、光等最重要的物理性能分支,充分展示材料物理性能的经典内容和工程应用及其发展,包括信息和能源等新材料领域的发展和典型应用。本书理论内容叙述清晰明了,各章节内容相对独立,方便不同专业方向教学需要和自学。
本书适合作为高等学校材料类相关专业的教材使用,也可供材料领域的研究生、工程技术人员和科技工作者参考。
胡正飞,同济大学材料学院教授,博士生导师。
先后在苏州大学物理专业、华东理工大学物理化学专业、北京科技大学材料物理专业完成本科到博士阶段学业。曾是复旦大学博士后、佐治亚理工学院(Georgia Tech)高*级访问学者。
社会学术兼职有:中国机械工程学会材料专业委员会理事、全国材料新技术发展研究会理事、机械工程材料学报编委等。
专业上一直从事材料物理领域的科研和教学工作。主要从事金属材料领域应用基础理论和工程实际问题研究,一是具有显著工程应用背景的新型合金材料的开发和应用;二是材料及结构的失效分析与评价,包括材料的使役行为、腐蚀失效和设备关键部件寿命评估等。
主要研究领域有:
1.金属复合材料与轻量化;
2.耐热钢的蠕变、疲劳及其服役行为;
3.材料失效分析与评价;
4.高强度钢的强化与应用;
5.电子显微分析技术与应用.
近期承担或参与了国家“十一五”和“十二五”支撑课题、国家自然基金、973子课题、上海市重点课题等项目研究工作。研究方面关注与工程实际紧密结合的新材料开发与应用,长期跟踪重大工程领域的材料失效分析与评价方面研究。注重实验物理手段的运用,从材料的组织结构角度,注重利用TEM、HRTEM、XRD、EDS、AES等微观结构观察分析手段和数值模拟相结合的方法,认识微观结构演变行为及其动力学规律,深入理解材料组织结构与性能关系,并结合到新材料开发、材料工程应用评价、材料损伤与失效中去。已发表学术论文逾百篇。
教学方面主讲《材料物理性能》、《材料物理》、《电子显微分析原理与方法》等专业课程。
绪论
第1章材料的热学性质和晶格振动
1.1原子的运动与能量 4
1.2热容及其经典理论 4
1.2.1热容的概念 4
1.2.2热容的经典理论及其问题 5
1.3晶格振动 7
1.3.1一维单原子链 7
1.3.2周期性边界条件 8
1.3.3格波 8
1.4热容的量子理论 11
1.4.1晶格振动的量子化和声子 11
1.4.2晶格热容的量子理论 12
1.4.3爱因斯坦模型 12
1.4.4德拜模型 13
1.5材料热容性能及影响因素 15
1.5.1金属材料的热容 16
1.5.2无机材料的热容 18
1.5.3热容的分析方法与应用 19
1.5.4热分析应用 20
1.6热膨胀 22
1.6.1热膨胀系数 22
1.6.2热膨胀的本质及热膨胀系数导出 23
1.6.3膨胀系数的影响因素 26
1.6.4热膨胀分析与应用 28
1.7热传导 31
1.7.1热传导的概念和规律 32
1.7.2热扩散率和热阻 32
1.7.3热传导的物理机制 33
1.7.4材料的热传导及其影响因素 36
1.8热稳定性 40
1.8.1热稳定性的一般意义 40
1.8.2热应力和热冲击破坏 40
1.8.3热应力断裂因子和损伤因子 41
1.8.4材料的热稳定性评价方法 43
思考与练习题 44
第2章材料的电学性质
2.1固体电学性能概述 45
2.1.1材料的导电类型 46
2.1.2电导率和迁移率 46
2.2固体中电子状态和能带 48
2.2.1固体中电子能量状态和能带形成 48
2.2.2导体、半导体和绝缘体 49
2.3金属材料的电性能 51
2.3.1金属的导电机制 52
2.3.2金属电导率的影响因素 52
2.3.3固溶体 57
2.3.4金属间化合物 61
2.3.5金属电阻研究的意义 62
2.3.6常见的导电材料及其应用 62
2.4超导电性 64
2.4.1超导现象和概念 65
2.4.2超导的特征 66
2.4.3第二类超导体 67
2.4.4BCS理论 67
2.4.5约瑟夫森效应 68
2.4.6超导的应用 69
2.5离子导体 70
2.5.1离子导电机制 70
2.5.2快离子导体和固体电解质 71
2.6半导体材料的电性能 73
2.6.1半导体中的载流子与导电行为 73
2.6.2半导体中载流子的运动和有效质量 73
2.6.3半导体的类型和特征 77
2.6.4半导体中载流子的输运 81
2.7电接触现象及其效应 83
2.7.1材料中电子的逸出和功函数 83
2.7.2金属-金属接触 84
2.7.3p-n结 85
2.7.4金属-半导体接触 87
2.7.5半导体表面电子状态 89
2.7.6MIS结构 91
2.8半导体的光电效应与磁电效应 92
2.8.1半导体的光吸收 92
2.8.2半导体的光电导现象 94
2.8.3半导体的光生伏特效应 95
2.8.4霍尔效应及其应用 96
2.9热电效应 98
2.9.1泽贝克效应 98
2.9.2佩尔捷效应 99
2.9.3汤姆逊效应 100
2.9.4热电效应的应用 100
2.10绝缘体及其介电特性 102
2.10.1绝缘体 102
2.10.2电介质及介电极化行为 102
2.10.3介电极化的物理量 104
2.10.4电偶极矩与极化强度 105
2.10.5介电损耗 106
2.10.6介电材料的电导和击穿行为 108
2.11介电材料的极化与电学效应 109
2.11.1压电效应 109
2.11.2热释电现象 110
2.11.3铁电体 111
2.12材料电学性能应用分析 113
2.12.1建立二元固溶体端际固溶度曲线 114
2.12.2研究材料中的点缺陷 114
思考与练习题 115
第3章材料的磁学特性
3.1材料磁性的物理基础 117
3.1.1原子磁矩 118
3.1.2磁化与磁化强度 119
3.1.3材料的磁性分类 121
3.2磁性的物理本质 123
3.2.1原子磁矩的物理理论 123
3.2.2抗磁性来源 124
3.2.3抗磁性、顺磁性和铁磁性 124
3.2.4金属原子磁矩与磁性能 125
3.3铁磁性与自发磁化 126
3.3.1铁磁性的自发磁化 126
3.3.2磁畴及其结构 127
3.3.3实际磁性材料中的磁畴结构 129
3.3.4亚铁磁性与反磁性 131
3.4铁磁性材料在外磁场中磁化效应和影响因素 133
3.4.1静磁能与磁化功 133
3.4.2退磁能与磁性的形状各向异性 134
3.4.3磁的各向异性与磁晶能 134
3.4.4磁致伸缩与磁弹性能 137
3.5磁性材料的磁化曲线和技术磁化 138
3.5.1磁化曲线 138
3.5.2技术磁化 138
3.5.3磁滞现象和磁滞回线 141
3.5.4磁性能的影响因素 142
3.6磁性材料的动态磁化 143
3.6.1交变磁场中材料磁化的时间效应 144
3.6.2交变磁场中动态磁化的磁导率及其意义 144
3.6.3动态磁化的磁滞回线和磁化损耗 145
3.6.4磁共振损耗与磁导率减落 146
3.7铁氧体磁性材料 147
3.7.1铁氧体的概念和分类 147
3.7.2软磁铁氧体材料 148
3.7.3铁氧体硬磁材料 150
3.8磁物理效应与应用 150
3.8.1磁电阻效应 151
3.8.2磁光效应 155
3.8.3磁热效应与磁制冷 156
3.8.4磁流体 157
思考与练习题 158
第4章材料的光学性能
4.1光与颜色 160
4.2光与固体的相互作用 161
4.2.1光的折射 162
4.2.2光的反射 163
4.2.3光的色散 165
4.2.4光的吸收 165
4.2.5光的散射 167
4.3材料的透光性 167
4.3.1材料的透明性与颜色 168
4.3.2陶瓷材料的乳浊与半透明性 170
4.4材料发光和发光材料 171
4.4.1材料发光的概念 171
4.4.2发光的分类 172
4.4.3发光中心与发光材料 172
4.4.4无机发光材料及其应用 173
4.4.5有机发光材料及其应用 174
4.5半导体发光 175
4.5.1直接跃迁和间接跃迁 175
4.5.2半导体发光 177
4.5.3发光效率 178
4.5.4p-n结电致发光 179
4.5.5发光二极管与应用 180
4.6受激辐射与激光 181
4.6.1基本原理 181
4.6.2半导体激光 183
思考与练习题 185
第5章材料的力学性能
5.1材料的形变特性 186
5.1.1弹性形变与弹性模量 188
5.1.2弹性模量的物理意义 189
5.2弹性形变和滞弹性 190
5.2.1弹性形变的特征 190
5.2.2弹性形变的本质 190
5.2.3滞弹性和内耗 191
5.2.4黏弹性 192
5.2.5弹塑性形变 192
5.3晶体形变和位错运动 192
5.3.1位错运动与形变 192
5.3.2滑移临界分切应力 193
5.3.3单晶体滑移与形变 194
5.3.4滑移系和交滑移 194
5.3.5形变与强化 195
5.3.6晶体形变的其他方式 196
5.3.7弹塑性形变与材料性质的关系 198
5.3.8多晶体塑性形变及其特点 199
5.3.9多晶体塑性形变的机制和影响因素 199
5.4强度与断裂 203
5.4.1材料的理论强度 203
5.4.2格里菲斯脆性断裂理论 204
5.5断裂韧性 206
5.6疲劳 207
5.6.1交变载荷与循环应力 208
5.6.2疲劳寿命及其分类 209
5.6.3S-N曲线与疲劳极限 209
5.6.4疲劳寿命模型 210
5.6.5疲劳循环特征 211
5.6.6疲劳寿命的影响因素 212
5.7蠕变 213
5.7.1蠕变现象 213
5.7.2蠕变曲线 214
5.7.3蠕变强度和蠕变类型 214
5.8材料的超塑性 217
5.8.1超塑性特点 218
5.8.2超塑性的分类 218
5.8.3超塑性形变机理 219
5.8.4超塑性的应用 222
思考与练习题 223
参考文献 225