关于我们
书单推荐
新书推荐
|
光谱学与光谱技术(英文版)(Spectroscopy and Spectral Technique) 读者对象:物理、光学、大气科学等领域的本科生、研究生和高等院校教师,以及光学、遥感、大气物理、天文等相关科研人员,还有光电工程 和技术人员等
本书首先系统介绍了光谱学的基础概念,包括其起源与发展、原子和分子光谱。接着,详细探讨了11种典型的光谱技术,如激光诱导击穿光谱、拉曼光谱、红外光谱等,包括其原理、实验系统及前沿应用。随后,阐述了如何在材料、环境和工业生产等领域中结合应用多种光谱技术,以及其与单一技术相比的优势。本书还独特地介绍了基于机器学习的人工智能与光谱技术的结合应用。作为一大特色,结合最新科研成果,本书系统设计了多项光谱仿真实验项目。最后,本书展望了光谱学与光谱技术未来的发展趋势。
更多科学出版社服务,请扫码获取。
指导本科生获得江苏省优秀本科论文一等奖(连续5年);指导国家级大创项目(7项),并在全国大学生创新创业年会斩获“最佳创意奖”。
全国高校光电专业优秀课程思政教学案例特等奖(2022)
教育部“产学合作协同育人项目”优秀项目案例奖(2021)
江苏省首席科技传播专家(2022)
江苏省“六大人才高峰”高层次人才(2015)大气环境光电检测、光学工程江苏省高校“青蓝工程”中青年学术带头人
江苏省“双创计划”、江苏省“六大人才高峰”高层次人才
欧盟“玛丽?居里学者”人才计划
Contents
Chapter 1 Overview of Spectral Techniques 1 1.1 The Origin of Spectral Techniques 1 1.1.1 Spectrum and Spectroscopy 1 1.1.2 The History of Spectral Techniques 1 1.2 The Development of Spectroscopy Instruments 3 1.2.1 The Development of Spectroscopic Theory 3 1.2.2 The Advent of the Laser 4 1.2.3 Development of Spectrometers 5 1.3 Atomic Energy Levels and Atomic Spectrum 5 1.3.1 Atomic Energy Level 5 1.3.2 Atomic Emission Spectroscopy 6 1.3.3 Atomic Absorption Spectrum 8 1.4 Molecular Spectrum 9 1.4.1 Molecular Vibrational Energy Levels and Corresponding Spectral Techniques 10 1.4.2 Molecular Electrons Moving Energy Levels and Corresponding Spectral Techniques 11 References 12 Chapter 2 Laser-induced Breakdown Spectroscopy 15 2.1 Birth and Development of LIBS 15 2.2 Fundamentals of LIBS 17 2.2.1 Laser-induced Plasma 17 2.2.2 Local Thermodynamic Equilibrium 18 2.2.3 Plasma Temperature and Electron Number Density 19 2.2.4 Qualitative and Quantitative Analysis 20 2.3 Instrumentation for LIBS 21 2.3.1 LIBS Experimental Setup 21 2.3.2 Online/In Situ LIBS Instruments 22 2.3.3 Signal Enhancement for LIBS 23 2.4 LIBS Applications 25 2.4.1 Environmental Monitoring 25 2.4.2 Coal Analysis 27 2.4.3 Biomedicine 29 2.4.4 Agriculture and Food Safety 31 2.4.5 Space Exploration 32 2.4.6 Ocean Exploration 34 References 35 Chapter 3 Raman Spectroscopy Technology 41 3.1 Birth and Development of Raman Spectroscopy 41 3.1.1 The Great Founder 41 3.1.2 The Birth of Raman Spectroscopy Technology 41 3.1.3 The Development of Raman Spectroscopy Technology 42 3.2 Principle of Inelastic Scattering 42 3.2.1 Nonconservation of the Kinetic Energy of Particles 42 3.2.2 Elastic and Inelastic Scattering 43 3.2.3 Raman Scattering and Rayleigh Scattering 43 3.2.4 Stokes and Anti-Stokes Lines 46 3.3 Experimental Systems for Raman Spectroscopy 50 3.3.1 The Source and Splitting of the Light 50 3.3.2 Collection and Monitoring 53 3.4 Surface-Enhanced Raman Spectroscopy 54 3.4.1 Defects of Ordinary Raman Spectroscopy 54 3.4.2 Principles of Surface-Enhanced Raman Spectroscopy 55 3.5 Important Applications of Raman Spectroscopy 56 3.5.1 Spectral Fingerprint 56 3.5.2 Real-time Detection of Liquid Phase Raman Spectroscopy Experiment 59 3.5.3 Configuration Analysis of Raman 62 References 64 Chapter 4 Differential Optical Absorption Spectroscopy 68 4.1 Development of DOAS 68 4.1.1 Development of DO AS Abroad 68 4.1.2 Domestic DOAS Development 69 4.1.3 Opportunities and Challenges 70 4.2 Principle of DOAS 71 4.2.1 Lambert-Beer,s Law 71 4.2.2 Advantages of DOAS 72 4.3 Experimental System of DOAS 73 4.3.1 Active DOAS System 73 4.3.2 Passive DOAS System (MAX-DOAS) 74 4.4 DOAS for Multi-platform 75 4.4.1 D OAS for the Ground Platform 75 4.4.2 DOAS for Mobile Platforms 76 4.4.3 Multi-platform Joint Application 77 4.5 Important Applications of DOAS 77 4.5.1 The Global Ozone Monitoring Experiment (GOME) 77 4.5.2 Gaofen-5 Satellite and Atmospheric Pollution Component Inversion Method 78 4.5.3 Determination of Plume from the Pollution Source 78 4.5.4 Planar Array Measurements of Volcanic Plumes 79 4.5.5 Comprehensive Stereoscopic Observation Network 80 References 81 Chapter 5 Infrared Spectroscopy 86 5.1 Background Introduction of Infrared Spectroscopy 86 5.1.1 Infrared Radiation 86 5.1.2 IR Region 87 5.1.3 Development of IR Spectroscopy 87 5.2 Principle of IR Spectroscopy 87 5.2.1 Principle and Characteristics of IR Spectroscopy 87 5.2.2 Infrared Spectrometer 88 5.3 Fourier Transform Infrared Spectroscopy 89 5.3.1 Introduction to FTIR 89 5.3.2 Principle of FTIR Spectroscopy 89 5.4 Application of IR Spectroscopy 90 5.4.1 IR Spectroscopy and Environmental Monitoring 90 5.4.2 IR Spectroscopy and Food Detection 93 5.4.3 IR Spectroscopy and Microbiological Analyses 95 5.4.4 IR Spectroscopy and Agriculture 97 5.4.5 IR Spectroscopy and Forensic Analysis 100 References 104 Chapter 6 Laser-induced Fluorescence Spectroscopy 107 6.1 Introduction to Fluorescence Spectroscopy 107 6.1.1 The History of Fluorescence Spectroscopy 107 6.1.2 Characteristics of Fluorescence Spectroscopy 108 6.1.3 Traditional Fluorescence Spectroscopy and Laser-induced Fluorescence Spectroscopy 110 6.2 The Technical Basis of Laser-induced Fluorescence 111 6.2.1 The Principle of Laser-induced Fluorescence 111 6.2.2 Affected Factors of Fluorescence 113 6.2.3 The Development of LIF Technology 114 6.3 Experimental System of LIF Spectroscopy 115 6.3.1 Excitation Light Sources 115 6.3.2 Detector 116 6.4 Important Applications of LIF 117 6.4.1 On-line Detection of Carbon Isotopes Based on LIF Spectroscopy of CN Radicals 117 6.4.2 Applications of LIF in Soils and Sediments 122 References 122 Chapter 7 Ultraviolet-visible Absorption Spectroscopy 128 7.1 Introduction of UV-Vis Absorption Spectroscopy 128 7.2 Principles of UV-Vis Absorption Spectroscopy 128 7.2.1 Formation and Characteristics of UV-Vis Absorption Spectrum 128 7.2.2 Main Types of Electronic Transitions 130 7.2.3 Absorption Band 131 7.2.4 Lambert-Beer,s Law and Spectrophotometric Analysis 132 7.3 Experimental System for UV-Vis Absorption Spectroscopy 133 7.3.1 Common Laboratory UV-Vis Absorption Spectroscopy Experimental Systems 133 7.3.2 Common Portable UV-Vis Absorption Spectroscopy Instruments 135 7.4 Important Applications of UV-Vis Absorption Spectroscopy 136 7.4.1 Quantitative Analysis by UV-Vis Absorption Spectroscopy 136 7.4.2 Qualitative Analysis by UV-Vis Absorption Spectroscopy 137 7.4.3 The Applications of UV-Vis Absorption Spectroscopy in Some Fields 139 References 140 Chapter 8 Tunable Diode Laser Absorption Spectroscopy 142 8.1 Introduction of TDLAS 142 8.1.1 The Origin and Development of TDLAS 142 8.1.2 Fundamental Principle of TDLAS 143 8.2 Gas Detection Method and System 146 8.2.1 Direct Absorption Spectroscopy 146 8.2.2 Wavelength Modulation Spectroscopy 147 8.2.3 Frequency Modulated Spectroscopy 149 8.2.4 Trace Gas Telemetry System 149 8.3 Important Applications of TDLAS 151 8.3.1 Atmospheric Environment Monitoring 151 8.3.2 Combustion Flow Field Diagnosis 151 8.3.3 Breath Detection in Medicine 152 8.3.4 Application in an Industrial Process 154 References 154 Chapter 9 Photoacoustic Spectroscopy 161 9.1 Introduction to Photoacoustic Spectroscopy 161 9.1.1 History of Photo acoustic Spectroscopy 161 9.1.2 Current Status of Research on Photoacoustic Spectroscopy 161 9.2 Principles of Photoacoustic Spectroscopy and Experimental Systems 162 9.2.1 The Photo acoustic Effect 162 9.2.2 Photoacoustic Signal and Minimum Detectable Concentration 163 9.2.3 Experimental Systems 165 9.3 Applications of PAS 168 9.3.1 Photoacoustic Spectroscopy for Aerosol Characterization 168 9.3.2 Breath Ammonia Levels in a Normal Human Population Study as Determined by Photoacoustic Laser Spectroscopy 171 9.3.3 Non-Invasive Monitoring of Blood Glucose by Photoacoustic Spectroscopy 173 References 175 Chapter 10 Cavity Ring-Down Spectroscopy 178 10.1 The Development of Cavity Ring-Down Spectroscopy 178 10.1.1 Pulsed Cavity Ring-Down Spectroscopy and Its Development 180 10.1.2 Continuous Wave Cavity Ring-Down Spectroscopy and Its Development 181 10.1.3 Optical Fiber Cavity Ring-Down Spectroscopy and Its Development 183 10.2 The Principle and Experimental System of CRDS 184 10.2.1 The Principles of CRDS 184 10.2.2 CRDS Experimental System 187 10.3 Advanced Technology Based on CRDS 188 10.3.1 Optical Cavity-Based Advanced Techniques 188 vi | Spectroscopy and Spectral Technique 10.3.2 Optical Cavity-Based Hybrid Techniques 192 10.4 Important Applications of CRDS 198 10.4.1 Environmental Trace Analysis 198 10.4.2 Biomedical Applications 201 10.4.3 Combustion and Plasma Diagnostics 202 References 204 Chapter 11 X-ray Fluorescence Spectrometry 212 11.1 Introduction of X-ray 212 11.1.1 Discovery of X-ray 212 11.1.2 Generation Principle of X-ray 213 11.1.3 Interaction Effects Between X-ray and Matter 214 11.1.4 Representative Detecting Methods Based on X-ray 215 11.2 Principle of XRF and Experimental Setup 216 11.2.1 Characteristics and Advantages of XRF 216 11.2.2 WDXRF and EDXRF 217 11.2.3 Micro X-ray Fluorescence 218 11.2.4 Total Reflection X-ray Fluorescence 219 11.2.5 Qualitative and Quantitative X-ray Fluorescence Analysis 221 11.3 Significant Applications of XRF 222 11.3.1 XRF Applied in Environmental Detection 222 11.3.2 Classification of Species of Plants by XRF 224 11.3.3 Determining the Depth Distribution of Elements Using XRF 225 11.3.4 XRF Applied in Bio-medicine 227 References 229 Chapter 12 Hyperspectral Technology 231 12.1 Introduction to Hyperspectral Technology 231 12.1.1 The Birth of Hyperspectral Technology 231 12.1.2 Present Situation of Hyperspectral Technology 233 12.1.3 Development Prospect of Hyperspectral Technology 235 12.2 Principle and Experimental System of Hyperspectral Technology 236 12.2.1 Experimental Principle of Hyperspectral Technology .236 12.2.2 Introduction to the Experimental System of Hyperspectral Technology 238 12.2.3 Features and Advantages of Hyperspectral Technology 239 12.3 Application of Hyperspectral Technology 240 12.3.1 Application of Hyperspectral Technology in Agricultural Science 240 12.3.2 Application of Hyperspectral Technology in Food Safety 243 12.3.3 Application of Hyperspectral Technology in Biomedicine 246 12.3.4 Application of Hyperspectral Technology in the Military Field 248 References 248 Chapter 13 Spectral Fusion Technology and Application 252 13.1 LIBS and Raman Technologies 252 13.1.1 The Role of LIBS Technology and Raman Technology in the Application 252 13.1.2 Important Application Based on LIBS-Raman Technology 254 13.2 LIBS and LIF Technologies 261 13.2.1 The Role of LIBS Technology and LIF Technology in Application 261 13.2.2 Important Application Based on LIBS-LIF Technology 262 13.3 LIBS, Raman and IR Technologies 263 13.3.1 Advantages of Adding IR Technology to LIBS Raman Technology 263 13.3.2 Important Applications Based on LIBS, IR and Raman Technology 264 References 267 Chapter 14 Intelligent Spectrum Based on Machine Learning 270 14.1 Introduction of Machine Learning and Intelligent Spectrum 270 14.1.1 The Origin and Development of Machine Learning 270 14.1.2 Introduction of Machine Learning Algorithms Commonly Used 270 14.2 Laser-Induced Breakdown Spectroscopy (LIBS) and Machine Learning 271 14.2.1 The Advantages of LIBS Combined with Machine Learning 271 14.2.2 Application of Machine Learning in LIBS 272 14.3 Infrared Spectroscopy (IR) and Machine Learning 279 14.3.1 The Advantages of IR Combined with Machine Learning 279 14.3.2 Application of Machine Learning in IR 280 14.4 Raman Spectroscopy and Machine Learning 285 14.4.1 The Advantages of Raman Spectroscopy Combined with Machine Learning 285 14.4.2 Application of Machine Learning in Raman Spectroscopy 286 14.5 Schematic of Hyperspectral Imaging (HSI) and Machine Learning 295 14.5.1 The Advantages of HSI Combined with Machine Learning 295 14.5.2 Application of Machine Learning in HSI 295 References 310 Chapter 15 Simulation Spectrum Teaching Experiments 312 15.1 Spectral Simulation Software (GaussView & Gaussian) 312 viii | Spectroscopy and Spectral Technique 15.1.1 Introduction of GaussView & Gaussian 312 15.1.2 Molecular Structure Modeling by GaussView 314 15.1.3 Molecular Structure Parameter Adjustment 320 15.1.4 Calculation Settings of Gaussian 324 15.2 IR Spectrum Simulation Experiment .330 15.2.1 Introduction to Infrared Spectroscopy (IR Spectrum) 330 15.2.2 The Establishment of Water and Ethanol Molecular Structure 330 15.2.3 Calculation Parameters Setup for IR Spectrum 334 15.2.4 IR Spectral Analysis Simulation 335 15.3 Raman Spectrum Simulation Experiment 338 15.3.1 Introduction to Raman Spectrum 338 15.3.2 The Establishment of Oxygen and Ozone Molecular Structure 339 15.3.3 Calculation Parameters Setup for Raman Spectrum 342 15.3.4 Raman Spectral Analysis Simulation 343 15.4 UV-Vis Spectrum Simulation Experiment 345 15.4.1 Introduction to UV-Vis Spectrum 345 15.4.2 The Establishment of Benzene and Ethylbenzene Molecular Structure 346 15.4.3 Calculation Parameters Setup for UV-Vis Spectrum 347 15.4.4 UV-Vis Spectral Analysis Simulation 348 15.5 Simulation of the External Electric Field of Ethylbenzene 350 15.5.1 Research Significance and Background 351 15.5.2 Theory and Computational Method 351 15.5.3 Method and Basis Set Selection of EB 352 15.5.4 Effect of Electric Field on Bond Length and Energy of the Molecule 353 15.5.5 Effect of Electric Field on Distribution of Molecular Orbital Energy Levels 354 15.5.6 Effect of Electric Field on Infrared Absorption Intensity 356 15.5.7 Extension of Related Research (1) Tunneling Ionization 357 15.5.8 Extension of Related Research (2) Potential Energy Surface Scanning 358 15.5.9 Research Conclusions 360 References 360 Postscript 363
你还可能感兴趣
我要评论
|