本书的目录和前言已经译成中文,正文部分保留英文原版。另附中国医科院基础医学研究所博士生导师高友鹤教授所作导读一篇。
从组学的生物时代开始,科学家一直追求的是降低基因组规模实验的复杂性,以便于了解其蕴含的基本生物学原理。在《蛋白质网络与途径分析》这本书中,专家从业人员汇编了函数数据分析的方法,经常被称为系统生物学,它被应用于药物研发、医学和基础医学领域的研究中。本书分为三部分:1)对蛋白质、化合物和基因之间相互作用的阐述;2)介绍了网络、相互作用组和本体论研究中常用的分析工具;3)函数分析的应用范围。作为非常著名的《分子生物学方法》系列丛书之一,本书提供了详细的说明,并且为动手实践提供了建议。
权威和前沿的《蛋白质网络与途径分析》既阐明了生物实验室实验方法,又介绍了相关计算工具,涵盖了这个令人着迷的新兴领域中大多数的问题。
更多科学出版社服务,请扫码获取。
《蛋白质网络与途径分析》由来自于欧美的学术领域、政府研究机构、医药产业和生物信息学公司的一线从业人员撰写,内容具有专业性和前沿性,全面广泛地介绍了系统生物学实验和函数数据分析的具体分析方法。本书的内容分为三个部分。第一部分阐明蛋白质、化合物和基因问的相互作用以及蛋白质相互作用的手工注释。第二部分是关于函数分析的专业工具介绍。第三部分介绍了函数分析的应用。本书的作者(巴斯)Nikolsky博士,GeneGo公司总裁,在生命科学领域有着数十年的工作经验。
目录
前言 v
撰稿人 ix
第一部分:相互作用
1. 用Linguamatics公司研发的I2E软件从发表的文献中挖掘蛋白质相互作用 3
JudithBandy,DavidMilward,andSarahMcQuay
2. 基因组规模实验中转录因子与DNA结合的相对亲和力、特异性和敏感度 15
VladimirA.Kuznetsov
3. 抑制因子-靶标数据的管理:步骤和在途径分析上的作用 51
SreenivasDevidas
4. 用功能蛋白质芯片描绘蛋白质相互作用网络 63
DawnR.MattoonandBarrySchweitzer
5. 蛋白质相互作用的手工注释 75
SvetlanaBureeva,SvetlanaZvereva,ValentinRomanov,and TatianaSerebryiskaya
第二部分:分析
6. 基因集富集分析 99
CharlesA.TilfordandNathanO.Siemers
7. PANTHER途径:一个整合了数据分析工具且基于本体的途径数据库 123
HuaiyuMiandPaulThomas
8. 采用网络分析优化排序影响途径的基因 141
AaronN.Chang
9. 从多样的功能基因组数据中发掘生物学网络 157
ChadL.Myers,CameliaChiriac,andOlgaG.Troyanskaya
10. 在基于知识的集成平台上对组学数据及小分子化合物的函数分析 177
YuriNikolsky,EugeneKirillov,RomanZuev,EugeneRakhmatulin,and TatianaNikolskaya
11. 动力学模型作为一种整合多层次动态实验数据的工具 197
Ekaterina Mogilevskaya,Natalia Bagrova,Tatiana Plyusnina,Nail Gizzatkulov,Eugeniy Metelkin,EkaterinaGoryacheva,SergeySmirnov,YuriyKosinsky,AleksanderDorodnov,KirillPeskov,TatianaKarelina,IgorGoryanin,andOlegDemin
12. Cytoscape:用于网络建模的一个基于社区的框架 219
SarahKillcoyne,GregoryW.Carter,JenniferSmith,andJohnBoyle
13. 用语义数据集成和知识管理表示生物网络相关性 241
SaschaLoskoandKlausHeumann
14. 复杂的、多数据类型及多工具分析的解决方案:运用工作流程与流水线方法的 原则及应用 259
RobinE.J.MunroandYikeGuo
第三部分:应用
15. 高通量siRNA筛选结合化合物筛选作为一种干扰生物系统以及识别目标途径的方法 275
JeffKiefer,HongweiH.Yin,QiangQ.Que,andSpyroMousses
16. 用高密度等位基因关联数据进行途径和网络的分析 289
AliTorkamaniandNicholasJ.Schork
17. miRNAs:从生物起源到网络 303
GiuseppeRussoandAntonioGiordano
18. MetaMiner(CF):疾病导向的生物信息学分析环境 353
JerryM.Wright,YuriNikolsky,TatianaSerebryiskaya,andDianaR.Wetmore
19. 转化研究与生物医学信息学 369
MichaelLiebman
20. ArrayTrack:一个美国食品及药物管理局(FDA)和公共基因组工具 379
HongFang,StephenC.Harris,ZhenjiangSu,MinjunChen,Feng Qian,Leming Shi,RogerPerkins,andWeidaTong
索引 399
(高友鹤 尹剑锐 译)
Contents
Preface v
Contributors ix
SECTION I:INTERACTIONS
1. Mining Protein–Protein Interactions from Published Literature Using Linguamatics I2E 3
Judith Bandy,David Milward,and Sarah McQuay
2. Relative Avidity,Specificity,and Sensitivity of Transcription Factor–DNA Binding in Genome-Scale Experiments 15
Vladimir A. Kuznetsov
3. Curation of Inhibitor-Target Data:Process and Impact on Pathway Analysis 51
Sreenivas Devidas
4. Profiling Protein Interaction Networks with Functional Protein Microarrays 63
Dawn R. Mattoon and Barry Schweitzer
5. Manual Annotation of Protein Interactions 75
Svetlana Bureeva,Svetlana Zvereva,Valentin Romanov,and Tatiana Serebryiskaya
SECTION II:ANALYSIS
6. Gene Set Enrichment Analysis 99
Charles A. Tilford and Nathan O. Siemers
7. PANTHER Pathway:An Ontology-Based Pathway Database Coupled with Data Analysis Tools 123
Huaiyu Mi and Paul Thomas
8. Prioritizing Genes for Pathway Impact Using Network Analysis 141
Aaron N. Chang
9. Discovering Biological Networks from Diverse Functional Genomic Data 157
Chad L. Myers,Camelia Chiriac,and Olga G. Troyanskaya
10. Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated “Knowledge-Based” Platform 177
Yuri Nikolsky,Eugene Kirillov,Roman Zuev,Eugene Rakhmatulin,and Tatiana Nikolskaya
11. Kinetic Modeling as a Tool to Integrate Multilevel Dynamic Experimental Data 197
Ekaterina Mogilevskaya,Natalia Bagrova,Tatiana Plyusnina,Nail Gizzatkulov,Eugeniy Metelkin,Ekaterina Goryacheva,Sergey Smirnov,Yuriy Kosinsky,Aleksander Dorodnov,Kirill Peskov,Tatiana Karelina,Igor Goryanin,and Oleg Demin
12. Cytoscape:A Community-Based Framework for Network Modeling 219
Sarah Killcoyne,Gregory W. Carter,Jennifer Smith,and John Boyle
13. Semantic Data Integration and Knowledge Management to Represent Biological Network Associations 241
Sascha Losko and Klaus Heumann
14. Solutions for Complex,Multi Data Type and Multi Tool Analysis:Principles and Applications of Using Workflow and Pipelining Methods 259
Robin E. J. Munro and Yike Guo
SECTION III:APPLICATIONS
15. High-Throughput siRNA Screening as a Method of Perturbation of Biological Systems and Identification of Targeted Pathways Coupled with Compound Screening 275
Jeff Kiefer,Hongwei H. Yin,Qiang Q. Que,and Spyro Mousses
16. Pathway and Network Analysis with High-Density Allelic Association Data 289
Ali Torkamani and Nicholas J. Schork
17. miRNAs:From Biogenesis to Networks 303
Giuseppe Russo and Antonio Giordano
18. MetaMiner (CF):A Disease-Oriented Bioinformatics Analysis Environment 353
Jerry M. Wright,Yuri Nikolsky,Tatiana Serebryiskaya,and Diana R. Wetmore
19. Translational Research and Biomedical Informatics 369
Michael Liebman
20. ArrayTrack:An FDA and Public Genomic Tool 379
Hong Fang,Stephen C.Harris,Zhenjiang Su,Minjun Chen,Feng Qian,Leming Shi,Roger Perkins,and Weida Tong
Index 399
Chapter 1
Mining Protein?Protein Interactions from Published
Literature Using Linguamatics I2E
Judith Bandy,David Milward,and Sarah McQuay
Abstract
Natural language processing (NLP) technology can be used to rapidly extract protein?protein interactions
from large collections of published literature.In this chapter we will work through a case study
using MEDLINE1 biomedical abstracts (1) to find how a specific set of 50 genes interact with each
other.We will show what steps are required to achieve this using the I2E software from Linguamatics
(www.linguamatics.com (2)).
To extract protein networks from the literature,there are two typical strategies.The first is to find pairs
of proteins which are mentioned together in the same context,for example,the same sentence,with the
assumption that textual proximity implies biological association.The second approach is to use precise
linguistic patterns based on NLP to find specific relationshi