《贝塔束——中微子束(英文影印版)》详细地介绍了beta束这个概念。beta束是新近提出的构建强中微子束的一种途径。本书从技术和实验两方面对这一概念做了介绍。本书的读者群体包括理论研究者、研究生、从事高能物理实验的实验工作者、从事仪器设计的科研人员等。同时,本书也适合制定科技政策的人员阅读。
加速器是探索微观世界最有力的工具。中微子是已知基本粒子中最神秘的对象。贝塔束正是在加速器上产生并研究中微子的新技术。《贝塔束——中微子束(英文影印版)》作为这方面非常难得的专著,对于相关研究人员来说参考意义极大。
(瑞士)林德罗斯,欧洲核子中心教授。
Acknowledgments vii
Foreword xiii
1. Introduction 1
1.1 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Experiments . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Phenomenology . . . . . . . . . . . . . . . . . . . 2
1.2 Three-family Oscillations and CP or T Violation . . . . . 4
1.2.1 How to measure leptonic CP violation . . . . . . . 5
1.2.2 The problem of degenerate solutions . . . . . . . . 9
1.3 Experimental Setups . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Conventional neutrino beams . . . . . . . . . . . . 9
1.3.2 First generation long-baseline experiments . . . . 10
1.3.3 Second generation long-baseline experiments . . . 13
1.3.4 Next generation conventional neutrino beams . . 16
1.4 Why Look For New Concepts in Neutrino Beams? . . . . 21 Acknowledgments vii
Foreword xiii
1. Introduction 1
1.1 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Experiments . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Phenomenology . . . . . . . . . . . . . . . . . . . 2
1.2 Three-family Oscillations and CP or T Violation . . . . . 4
1.2.1 How to measure leptonic CP violation . . . . . . . 5
1.2.2 The problem of degenerate solutions . . . . . . . . 9
1.3 Experimental Setups . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Conventional neutrino beams . . . . . . . . . . . . 9
1.3.2 First generation long-baseline experiments . . . . 10
1.3.3 Second generation long-baseline experiments . . . 13
1.3.4 Next generation conventional neutrino beams . . 16
1.4 Why Look For New Concepts in Neutrino Beams? . . . . 21
1.5 New Concepts on Neutrino Beams . . . . . . . . . . . . . 23
1.5.1 Neutrino factories . . . . . . . . . . . . . . . . . . 24
2. Machine Aspects 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 A Possible Beta-Beam Facility . . . . . . . . . . . . . . . 28
2.3 The Beta BeamIsotopes . . . . . . . . . . . . . . . . . . . 29
2.3.1 Which isotope to use . . . . . . . . . . . . . . . . 29
2.3.2 Isotope production . . . . . . . . . . . . . . . . . 30
2.3.3 The ISOLmethod . . . . . . . . . . . . . . . . . . 33
2.3.4 Direct production . . . . . . . . . . . . . . . . . . 34
2.3.5 Production ring . . . . . . . . . . . . . . . . . . . 35
2.3.6 Production rates . . . . . . . . . . . . . . . . . . . 37
2.4 Ion Transfer, Ionization and Bunching . . . . . . . . . . . 39
2.5 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 Linear accelerators . . . . . . . . . . . . . . . . . 42
2.5.2 Some basics about synchrotrons . . . . . . . . . . 43
2.6 Stacking and Storage . . . . . . . . . . . . . . . . . . . . . 49
2.6.1 Why do we need stacking? . . . . . . . . . . . . . 49
2.6.2 Beam-cooling . . . . . . . . . . . . . . . . . . . . 50
2.6.3 Stacking . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.4 Annual rate of neutrinos . . . . . . . . . . . . . . 55
2.6.5 Other limitations . . . . . . . . . . . . . . . . . . 57
2.7 Possible Future Development . . . . . . . . . . . . . . . . 58
2.7.1 Accumulation at low energy . . . . . . . . . . . . 58
2.7.2 Two isotopes in the ring at the same time . . . . 60
2.7.3 Higher gamma . . . . . . . . . . . . . . . . . . . . 61
2.7.4 Barrier buckets in the decay ring . . . . . . . . . . 62
2.7.5 Acceleration of partly stripped ions . . . . . . . . 64
3. CERN-Fr′ejus Beta Beam Physics Potential 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 The CERN-Fr′ejus Configuration . . . . . . . . . . . . . . 68
3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Systematic errors . . . . . . . . . . . . . . . . . . 75
3.4 Oscillation Analysis . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 θ13 searches . . . . . . . . . . . . . . . . . . . . . . 79
3.4.2 Leptonic CP violation searches . . . . . . . . . . 84
3.4.3 Searches that cannot be done in this configuration 86
3.5 Combined Analyses with the Atmospheric Neutrinos . . . 89
3.5.1 Mass hierarchy . . . . . . . . . . . . . . . . . . . 90
3.5.2 Degeneracy breaking . . . . . . . . . . . . . . . . 90
3.6 Combined Analyses with the SPL Super Beam . . . . . . 90
3.7 Comparison with Other Super Beam Experiments . . . . 93
4. Physics Potential of Other Beta Beam Settings 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 High Energy Beta Beams . . . . . . . . . . . . . . . . . . 98
4.3 Monochromatic Neutrino Beams . . . . . . . . . . . . . . 103
4.4 Beta Beams Based on 8B and 8Li Ions . . . . . . . . . . 105
4.5 High Energy 8B/8LiBeta Beams . . . . . . . . . . . . . . 107
4.6 Comparison with Other Neutrino Facilities and
Green-field Scenarios . . . . . . . . . . . . . . . . . . . . . 109
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5. Low Energy Beta Beams 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.2 Low Energy Setups . . . . . . . . . . . . . . . . . . . . . 120
5.2.1 Off-axis configurations . . . . . . . . . . . . . . . 122
5.3 Nuclear Structure, Neutrino-nucleus,
Nuclear Astrophysics Applications . . . . . . . . . . . . . 127
5.4 Fundamental Interaction Studies . . . . . . . . . . . . . . 132
5.4.1 Weinberg angle measurement . . . . . . . . . . . . 132
5.4.2 Conserved vector current hypothesis . . . . . . . . 133
5.4.3 Neutrino magnetic moment . . . . . . . . . . . . . 134
Bibliography 137
Index 153