本书是一部代数几何教程,旨在研究算法。书中的内容实用性很强,涉及的领域有鲁棒、图论、CAD/CAM,和几何信息系统。这些计算几何的现代观点在解决实际问题的时候效率更高,更加易于理解,也更易于操作。目次:计算几何导论;线段交点;多边形三角剖分;线性过程;正交范围研究;维诺图;安排与对偶性;Delaunay三角;更多几何结构;凸包;二元空间划分;鲁棒运动计划;四叉树;可视图;单纯性区域查找。读者对象: 普通高等学校信息与计算科学专业、计算数学专业硕士生、博士生相关课程的教材或参考书,还可供从事计算机辅助几何设计、计算机图形图像处理等相关领域的科学技术工作者参考。
《计算几何(第3版)》为世界**计算机教材精选之一。全书共分十六章,主要内容包括线段求交:专题图叠合,正交区域查找:数据库查询,点定位:找到自己的位置,Voronoi图:邮局问题,*多几何数据结构:截窗,空间二分:画家算法,可见性图:求*短路径等。本书不仅内容全面,而且紧扣实际应用,重点突出,既有深入的讲解,同时每章都设有“注释及评论”和“习题”,方便读者*深入的理解,被世界众多大学作为教材。本书由荷兰伯格著。
1 ComputationaI Geometry Introduction
1.1 AnExample: Convex Hulls
1.2 Degeneracies and Robustness
1.3 Application Domains
1.4 Notes and Comments
1.5 Exercises
2 Line Segment lntersection Thematic Map Overlay
2.1 Line Segment lntersection
2.2 The Doubly-Connected Edge List
2.3 Computing the Overlay of Two Subdivisions
2.4 Boolean Operations
2.5 Notes and Comments
2.6 Exercises
3 Polygon Triangulation
Guarding an Art GaHery
3.1 Guarding and Triangulations
3.2 Partitioning a Polygon in to Monotone Pieces
3.3 Triangulating a Monotone Polygon
3.4 Notes and Comments
3.5 Exercises
4 Linear Programming
Manufacturing witb Molds
4.1 The Geometry of Casting
4.2 Half-Planelntersection
4.3 IncrementaILinear Programnung
4.4 Randomized Linear Programming
4.5 Unbounded Linear Programs
4.6 *Linear Programmingin Higher Dimensions
4.7 *Smallest Enclosing Discs
4.8 Notes and Comments
4.9 Exercises
5 OrthogonaI Range Searching Querying a Database
5.1 l-Dimensional Range Searching
5.2 Kd-Trees
5.3 RangeTrees
5.4 Higher-DimensionaIRangeTrees
5.5 General Sets ofPoints
5.6 FractionaI Cascading .
5.7 Notes and Comments
5.8 Exercises
6 PointLocation Knowing Where You Are
6.1 PointLocation and TrapczoidaIMaps
6.2 ARandomizedIncrementaI Algorithm
6.3 Dealing with Degenerate Cases
6.4 *ATaiI Estimate
6.5 Notes and Comments
6.6 Exercises
7 Voronoi Diagrams
The Post Orffice Problem
7.1 Definition and Basic Ptoperties
7.2 Computing the Voronoi Diagram
7.3 Voronoi Diagrams of Line Segments
7.4 Farthest-Point Voronoi Diagrams
7.5 Notes and Comments
7.6 Exercises
8 Arrangements and Duality Supersampling in Ray Tracing
8.1 Computing the Discrepancy
8.2 Duality
8.3 Arrangements of Lines
8.4 Levels and Discrepancy
……
9 Delaunay Triangulations Hejght Interpolation
10 More Geometric Data Structures Windowing
11 Convex Hulls Mixing Things
12 Binary Space Partitions The Painter's Algorithm
13 Robot Motion Plaruung Getting Where You Want to Be
14 Quadtrees Non-Uruform Mesh Generation
15 Visibility Graphs Finding the Shortest Route
16 Simplex Range Searching Windowing Revisited
Bibliography
Index